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PILOT WILLINGNESS TO TAKE OFF INTO MARGINAL WEATHER,
PART II: ANTECEDENT OVERFITTING WITH FORWARD

STEPWISE LOGISTIC REGRESSION

we can actually overfi t the model by juggling the β (beta) 
coeffi cients in the exponent, β

0
 + β

1
P

1
..., until we arrive 

at a prediction function that superfi cially seems to fi t 
our data fairly well. However, that fi t can owe more to 
this general ability to fi t anything with enough terms 
than it does to our actual ability to fi nd a small number 
of valid, reliable factors truly modeling real, underlying 
processes. 

Overfi tting is usually considered worst when it in-
fl ates Type I error (false statistical signifi cance when 
none truly exists in the population). Ideally, Type I error 
should only refl ect sampling error—pure variation due 
to subject-related factors. In fact, we expect Type I errors 
about 5% of the time with normally distributed random 
numbers when the statistical signifi cance level is set at α 
= .05—because that is precisely how “α  = .05” is defi ned 
in the fi rst place.

But Type I error can also be an unwanted side effect of 
ill-considered experimental design or statistical method. 
And this is where this issue of overfi tting relates to our Part 
I experiment. At some point during the analysis of those 
data, an intuition arrived. If forward stepwise regression 
were performed on n cases (pilots), starting with a large 
set of p candidate predictors, could overfi tting occur even 
though only a small number k of predictors were allowed 
into any given model? Could this happen even if the 
predictor/case ratio (k/n) were maintained strictly at, say, 
1/10 per model, as one common rule of thumb dictates? 
Was it a problem that we had 60 candidate predictors, 
even if no model were allowed more than one predictor 
per ten pilots?

In other words, could there be two kinds of overfi tting, 
only one of which is normally mentioned in statistical 
texts written for the social sciences? This issue had more 
than passing practical signifi cance—if it were not settled, 
it could call into question all the conclusions in the Part 
I study.

INTRODUCTION

Part I of this report was entitled The Infl uence of Vis-
ibility, Cloud Ceiling, Financial Incentive, and Personality 
Factors on General Aviation Pilots’ Willingness to Take Off 
Into Marginal Weather. In Part I, we reviewed data and 
made preliminary conclusions from a study of VFR takeoff 
into marginal weather conditions. At that time, we made 
reference to a number of statistical issues, some of which 
were to be deferred to a Part II report. This is that second 
report. In it will be addressed both the relevant statistical 
concerns that were uncovered plus the effect these had 
on the interpretation of the Part I results.

A problem naturally comes when some experimental 
situation forces us to deviate from routine procedure. 
Specifi c to the situation here, we had examined a large 
number of predictors with logistic regression (originally 
83, fi nally reduced to about 60). It is standard statistical 
practice to limit the number of predictors included within 
any given regression model, usually to a ratio of about one 
predictor per 3-10 cases examined (Tabachnick & Fidell, 
2000; R.A. Stine, personal communication, January 26, 
2004). Otherwise, the data may be overfi tted. 

In its usual context, overfi tting refers to the ability 
of a relatively large predictor/case ratio to mimic an 
arbitrary mathematical function. This phenomenon has 
long been known; in fact, it fi nds its origin in such use-
ful mathematical fundamentals as the Taylor series and 
Fourier series (Kreyszig, 1972, p. 574, Taylor series). For 
example, the seemingly complex waveform in Figure 1 
(left) can actually be broken down into the sum of a 
small number of discrete component sine waves, each 
with its own amplitude, period, and phase (right). This 
is a creative use of this kind of curve-fi tting principle, 
whereby we take something complicated and explain it 
in simpler terms.

But there is a sinister side to the same idea that applies 
directly to regression analysis. If we try to include too 
many predictors into the standard sigmoid (S-shaped) 
logistic regression model below,

  (1)( )nnPPPevent e
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No textbook any of us had seen mentioned this spe-
cifi c problem. We had seen overfi tting discussed only 
relative to the number k of predictors in the model, not 
the number p of available predictors. In Part I, we used 
Statistical Packages for the Social Sciences V11.5 to do 
the logistic regression (Norušis, 1999; SPSS, 2003). This 
contained no adjustment for p, nor was any word of this 
issue found in the software documentation or on the 
SPSS corporate Web site.

METHOD

A Quick Random Number Simulation
To test our suspicions with controlled data, a normal-

random data set was generated in Excel 2000 (Microsoft, 
1999). This set emulated data from 30 pilots. Each pseudo-
“pilot” had 60 random “predictor scores” generated by 
Excel’s normal distribution pseudo-random function. 
A pseudo-random function is a mathematical equation 
that generates a distribution of numbers which, over the 
course of many iterations, behaves like a sample from a 
truly random distribution (Press, Flannery, Teukolsky, 
& Vetterling, 1988, ch. 14). In this case, each pseudo-
predictor score was based on a mean of 5, and standard 
deviation (SD) of 1. The exact choice of mean and SD 
should not be critical, since logistic regression adjusts the 
relative contribution of each predictor by multiplying it 
by its own β coeffi cient. Below is an abbreviated example 
of what this random data set looked like. The random 
scores themselves are highlighted in gray.

The structure of this data set closely paralleled the Part I 
technical report, which did compare two sets of 30 pilots, 
each having about 60 predictor scores per pilot. Those 
real predictor scores had been measurements taken on 
various environmental conditions, pilot demographics, 
and responses on a number of psychological personality 
tests.

Our new, randomly generated data were next run 
through SPSS forward stepwise, likelihood-ratio logis-
tic regression, using Takeoff as the dependent variable, 
the same way as was done for the Part I Low Financial 
Incentive experimental group (n=30). The dichotomous 
dependent variable (DV) Takeoff was coded as 0 for “No” 
and 1 for “Yes.” The success ratio (pilots taking off / total 
pilots) was set at (9/30) = .30, just as the actual Part I 
results had been. SPSS then proceeded to select three of 
the 60 random pseudo-predictors as “best,” and calculated 
a factor-weighted prediction score, namely

 ( )4042 084.3725.1146.11
1

PPPevent e
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(See Figure 2 of above graphed calculation.)

Each of the 30 “pilots” above was represented by its 
own number, 1-30, on the x-axis. Note how each had 
three pseudo-predictor score values, P2, P4, and P40, 
which SPSS logistic regression selected as best from 
the total set of 60. The actual pilot takeoff score (heavy 
dashed line, value 0-1), was a step function with “Take-
off ” represented by 1, and “No takeoff” as 0. Finally, 
notice the prediction score (solid “Prediction Eq.” line, 
also 0-1, the result of Equation 2). This ran quite close 
to the actual takeoff score, implying a very good fi t of 
predicted takeoff to actual takeoff. 

The point of this whole exercise was to test quickly if a 
group of random numbers could predict a high percentage 
of takeoffs. This example showed that it could. Predictiv-
ity1 was (27/30) = 90%. Yet, this was completely due to 
SPSS acting on nothing but noise. Look at the raw scores 
themselves, P2, P4, and P40. There was no particular 
pattern to, or correlation between, these three predictors. 
The only pattern was in the weighted sum (β
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) after it was run through the SPSS modeling 
algorithm. This did not imply that anything was wrong 
with SPSS logistic regression. What it implied was the 
presence of some deeper statistical phenomenon at work, 
one undocumented in the textbooks we had read.

This was initially unnerving, since it seemed to call into 
question many of our Part I conclusions. How it could 
happen was not that surprising, though, as we began to 
consider the situation in detail. Theoretically, there were 
(60•59•58)/(3•2•1) = 34,220 possible three-predictor 
models to choose from.2 And, even though stepwise 
regression does not examine all possible combinations, 
it still does “capitalize on chance variation” (Derksen 
& Keselman, 1992). It starts by fi rst fi nding the single 
best predictor and then adds others, according to their 
relative improvement to the model. It is hill-climbing in 
predictivity space.3 And, even though hill-climbing does 
not guarantee getting to the absolute highest possible 
predictivity, it normally gets to one of the higher peaks. 
And here this was happening with random numbers. It 
all goes to show that even rare events may become quite 
likely when we roll the dice often enough (have too many 
predictors) or reach into the jar and feel for the biggest 
marbles (use stepwise regression). This is not to say these 
techniques should be strictly forbidden, it simply says we 
need to exercise caution.

So, to summarize, this kind of overfi tting was not 
the same as that discussed in the average social sci-
ences statistics textbook. Instead, the problem centered 
around the large number of predictors available before 
we started modeling. For this reason, it could be called 
antecedent overfi tting, because it derives from a condition 
existing prior to the analysis. The more common kind of 
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overfi tting—having too many predictors inside a given 
model—could then be more aptly called postcedent overfi t-
ting, since that has to do with events occurring after the 
number of candidate predictors is already established. In 
antecedent overfi tting, the number of candidate predictors 
p is too large. In postcedent overfi tting, the number of 
predictors k included in the fi nal model is too large.

Literature Search
Once it became obvious that this problem was a legiti-

mate challenge to the Part I analysis, the next step was 
to consult a nationally known statistician (Tabachnick, 
personal communication, May 15, 2003). She confi rmed 
the suspicion that, if known at all, the topic was not 
common in the social sciences. An extensive Internet 
search fi nally led to a 1998 unpublished draft of a paper 
by Foster and Stine that directly referenced this problem 
in standard linear regression (p. 2): “This tendency of 
stepwise regression to overfi t grows with the number of 
available predictors, particularly once p > n” (n being 
the number of cases). This article allowed back referenc-
ing to other key studies, Rencher and Pun (1980), and 
Kendall and Stuart (1961, ch. 27), all having to do with 
conventional linear regression.

So, it appears that this problem has been known in 
linear regression for at least 40 years. However, it has 
been largely ignored outside the professional statistics 
community, nor has the extension to logistic regression 
yet been published (R.A. Stine, personal communication, 
July 27, 2003).

Monte Carlo Simulations
A single look is insuffi cient to reliably explore a phe-

nomenon. What would be suffi cient here would be either 
a) closed-form solutions for the maximum likelihood 
estimators (MLE) and confi dence intervals (CI) of both 
predictivity and R2, and/or b) Monte Carlo simulations 
to arrive at the same estimates.4 A closed-form solution 
is a single, globally optimal or correct solution that can 
be expressed as a solvable mathematical equation (e.g. 
y = 3x + 4). To a statistician, closed-form solutions are 
always the ideal. However, for a number of reasons, it 
is sometimes impossible to fi nd closed-form solutions. 
In that case, the standard procedure is to use numeri-
cal methods—for example computer algorithms using 
pseudo-random numbers as input to repeat some statisti-
cal computation hundreds or thousands of times, until 
the outcomes achieve some desired level of statistical 
stability/reliability. Monte Carlo simulations are such 
numerical methods, used when it is impossible to fi nd a 
closed-form solution. They are also used to cross-check 
the validity and accuracy of closed-forms.

In our particular case, logistic regression has no closed-
form solution. Instead, results are calculated using a set 
of equations (SPSS, 2003) run through an algorithm 
(i.e., a rule-based set of instructions). Most of the time 
this algorithm produces valid results, but there can be 
times when it fails (R.A. Stine, personal communication, 
January 26, 2004; Tabachnick & Fidell, 2000, p. 522). 
Strangely enough, this happens whenever a single predic-
tor has 100% predictivity and can successfully classify 
all DV outcomes. This causes the algorithm’s Newton-
Raphson estimation of model parameters to go wildly out 
of control and head off toward zero or infi nity (Press, et 
al., 1988, ch. 9.4). To guarantee termination, the SPSS 
algorithm simply halts after a certain number of itera-
tions, but the resulting model parameters are nonsensical. 
A second way the logistic regression algorithm can halt 
is bootstrap failure.5 In that case, the algorithm cannot 
get beyond the very fi rst step, because no predictor meets 
even the minimum criterion for inclusion (SPSS calls this 
the “PIN”). Predictors are included in forward stepwise 
regression because they improve model performance to 
some prespecifi ed degree. Calculation stops when hav-
ing more predictors fails to bring the specifi ed degree of 
improvement.

Lacking closed forms for model parameter estimates, 
and lacking the ability to derive such estimates ourselves, 
the present investigation was limited to Monte Carlo 
simulations. This would at least allow us to correctly 
estimate the following critical information for our Part 
I Low and High Financial Incentive models, both with 
and without a constant:

1.  Mean Predictivity A ratio μ
p
: (mu, cases successfully 

predicted / total cases)

2. Standard deviation of 
 predictivity

σ
p
 (sigma) 

3. Mean Nagelkerke R2 A ratio μ
R2

: (variance explained / 
total explainable variance)

4. Standard deviation of 
Nag. R2

σ
R2

5. .95 confi dence intervals Predictivity and R2 necessary for a 
model to arguably exceed chance

However, keep in mind that we did not expect values 
to be normally distributed here. A true normal curve has 
no x-axis limits. But recall that both predictivity and R2 
are constrained between hard limits of 0.0 – 1.0. This 
means normality should logically be impossible.

An arbitrary 100 models were generated to emulate 
each of the four Part I experimental model types, so 
400 simulations were generated in total. This was about 
one-tenth as many runs as standard numerical method 
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dictates. It was enough to be reasonably stable, just not 
enough to be highly accurate. This limit was self-im-
posed, mainly because the simulation process could not 
be highly automated. Runs had to be done slowly, with 
SPSS syntax in batches (Appendix C). And, at this point, 
we were just trying to prove a point relative to the Part 
I research, rather than provide exhaustive results for an 
audience of professional statisticians.

Using the actual takeoff proportions from the Part I 
report, the following conditions were tested:

1. Low Financial 
Incentive

(Takeoff proportion 
= .300)

2 predictors, 1 
constant

2. Low Financial 
Incentive

(Takeoff proportion 
= .300)

3 predictors, no 
constant

3. High Financial 
Incentive

(Takeoff proportion 
= .533)

2 predictors, 1 
constant

4. High Financial 
Incentive

(Takeoff proportion 
= .533)

3 predictors, no 
constant

Notice that the constant was counted as one predictor 
here. All models were based on 30 cases (pilots), each with 
60 available pseudo-predictor scores. Each such score was 
a normal (pseudo-) random number with mean of 5 and 
SD of 1. A “Takeoff” was coded as “1,” a “Non-takeoff” 
as “0.” Forward stepwise likelihood ratio (LR) was used as 
the predictor selection method, with the predictor inclu-
sion criterion (PIN) set at .15 and the exclusion criterion 
(POUT) set at .20. These were simply the SPSS default 
values + .10, to be more liberal about allowing predic-
tors into the model.6 We had to do this because the Low 
Incentive base takeoff proportion was so high to start 
with (.70) that we knew that, otherwise, models with 
a constant would rely too heavily on that base rate, and 
models without a constant would fail to bootstrap.

RESULTS

Simulation Results
(Results are summarized in the abbreviated Table 2.) 

To illustrate the method here, the Low Financial Incentive 
model with just two predictors plus a constant (columns 
2-3), had an average predictivity (μ

p
) of .83. This meant 

that, on the average, logistic regression on random num-
bers successfully predicted 83% of takeoffs and accounted 
for 53% of the explainable (Nagelkerke) variance in the 
data. Note that in all cases, a standard rule of thumb was 
observed, namely that the number of model predictors k 
should not exceed n/10, 30/10 = 3. So this was exploring 
antecedent overfi tting, not postcedent.

Average model performance was lower for the High 
Financial Incentive group. Moreover, models without 
a constant failed to converge in the High group. The 

 immediate reason for this was bootstrap failure. Unless a 
model saw at least one predictor with probability of model 
improvement less than the PIN, it terminated before even 
getting started. No predictors were ever entered, and the 
model halted on the very fi rst step.

The deeper reason for this bootstrap failure undoubtedly 
had to do with the High Incentive group’s higher success 
ratio of takeoffs (.533). Theoretically, the hardest thing 
for a random number-based model to do should be to 
predict a perfectly random takeoff (.500 chance). We can 
visualize the underlying logical process by imagining one 
of its two hypothetical opposites—the case where takeoffs 
were .000. In that case, any model with a constant could 
predict takeoff perfectly by always guessing “No takeoff.” 
The constant embodies a posteriori knowledge of the base 
rate of takeoff proportion, which captures the degree of 
uncertainty present in the dependent variable (DV). This 
uncertainty is greatest when takeoffs are 50% by chance 
and least when they are either 0 or 100%. Another way to 
view it is that, when information is defi ned as a condition 
of high certainty, there is literally more information in a 
success ratio of .300 than there is in one of .533 because 
.300 is closer to .000 (pure certainty). The logistic regres-
sion prediction equation takes advantage of this greater 
information, leading to better prediction from random 
sets with DV proportions either close to 0 or 1. 

We could have avoided bootstrap failure, had we set the 
PIN suffi ciently high. Every model would have then found 
some initial predictor to work with, no matter how poor, 
and the selection process could have continued. However, 
from experience, we knew that extremely high PINs (>.40) 
were often necessary to guarantee that all 100 models would 
bootstrap. This would have been absurdly relaxed in our 
entry criterion, so it was more apt to categorize these 
models as failures.

Finally, as a brief note on the distributions of μ and σ, 
as measured by standard skew and kurtosis (Fisher, 1970, 
ch. 3), normality was predictably unsupported. Appendix 
A graphically shows this.

Lacking a better method, confi dence intervals (CI) for 
predictivity and R2 means (μ) were roughly estimated by 
two methods. First, the usual z-score procedure of μ / SEμ, 
the mean in question divided by its standard error, yielded 
one estimate. Second, it was possible to graph the values as 
a scatterplot and estimate the CI by visual inspection. Actu-
ally, these two estimates proved similar, given the models 
we examined (see Figure B1 in Appendix B).

So what did the confi dence interval mean in this instance? 
Here, we wanted a .95 CI to mean that, if predictivity and 
R2 exceeded the proper value, then there would be less than 
a 5% chance of this happening by accident on any given 
occasion. For a crude approximation, this method was 
adequate, provided we remain clear about its limitations.
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DISCUSSION

There are really two main points to this exercise. First, 
the potential problem of antecedent overfi tting is a seri-
ous issue, yet one far from common knowledge in many 
fi elds. It needs to be as understood and emphasized in 
applied experimental psychology as it is in fi elds such as 
economics. We do a large number of regression studies, 
and these ought to be as statistically sound as those of 
our best-versed colleagues.

Second, it was essential to defend the results from Part 
I of this study. We began with a large number of candi-
date predictors because we naturally wanted to examine 
many personality and demographic factors, looking for 
things that might illuminate pilot decision-making in 
the face of adverse weather. But, once we realized we 
had a methodological problem, it became a question of 
seeing it to conclusion. We had seen similar studies fail 
to recognize this issue; therefore, it made sense to bring 
it to light.

The fi rst point—that a problem exists—has been am-
ply addressed by example. To address the second point, 
consider the fi nal best-model results fi rst calculated for 
actual pilots in Part I.7

Now compare those predictivities and R2s to those 
estimated by Monte Carlo simulation for random-data 
models. These had the exact same structure as the Part I 
models (same number of cases (n), candidate predictors (p), 
model predictors (k), and the same success ratio, that is, 
takeoffs/[takeoffs+non-takeoffs]). Table 4 summarizes.

Here, simulations were run for only two groups split 
by fi nancial incentive, n

low
=28 and n

high
=30 groups. The 

truth is that combined-incentive models were not terribly 
illuminating because the Low and High Incentive sub-
group best models seemed so different from one another. 
Financial incentive simply appeared to have too much 
effect on takeoff to make a combined-incentive model 
particularly meaningful.

It now became easy to see that the real-pilots Part I 
best-model results for High Financial Incentive pilots in 
no way exceeded what one would rightly expect by pure 
chance. This was in spite of its superfi cially signifi cant 
Wald p value of .04. Real-pilots predictivity was about 
75%—lower than average Monte Carlo predictivity with 
random numbers (76.3%). This was the reason for treating 
those results very gingerly in the Part I report.

So what about the Low Financial Incentive group 
best model, Visibility x Ceiling + Constant? What did 
it imply? Well, the answer to this should come in two 
parts. First—and unequivocally—weather does modulate 
takeoff rate. Pilots tend not to fl y in bad weather, and 
that average effect was exactly what the constant was re-
fl ecting—the base rate. Seventy fi ve percent of 28 pilots 

chose not to take off, whereas every pilot would certainly 
have taken off, given perfect weather and no other rea-
son not to. Assuming a highly conservative base rate of 
26/28 takeoffs for perfect weather, the estimated chance 
of getting the real takeoffs actually observed would be 
p=1184040•.0721•.937 by expansion of the binomial. That 
would be about four in ten billion billion. This was the 
exact reason a perfect-weather group was not tested in the 
fi rst place. Why waste resources testing the obvious?

What the VxC part of the model was actually testing 
was fi ne weather discrimination. This involved variance 
left over after the base rate was taken into account. VxC 
was simply representing explainable variance unattribut-
able to average weather foulness.

From a modeling perspective, the low incentive results 
implied that weather quality was primarily being perceived 
as a Go/No-go binary, threshold type of decision. The 
base rate (constant) supported that conclusion. To a lesser 
degree, some pilots seemed to think of weather as a con-
tinuum, probably a synergistic reaction between visibility 
and cloud ceiling. The VxC component supported that. 
To put it another way, their “cognitive whole” seemed 
greater than just the weighted sum of its individual parts. 
In pseudo-math, β

vc
V x C > β

v
V + β

c
C.

How reliable were these low incentive conclusions? 
Table 4 shows that the Part I real-pilots low-incentive 
85.7% predictivity did exceed the random-generated 
Monte Carlo mean of 80.4%, although it did not top the 
estimate of 89% for the .95 CI. The real-pilots Nagelkerke 
R2 of .52 considerably bested the Monte Carlo mean of 
.36, and came close to meeting the .95 CI of .59. So, 
judging from the Monte Carlo scatterplots (Appendix 
B, Figure B2), reliability for the low incentive n=28 
experimental data was roughly α =.16 for predictivity 
and α =.08 for R2. 

Given that this was a preliminary study, one is free to 
draw one’s own conclusions about the true reliability of 
the low-incentive VxC model. But do keep in mind that 
it does have clear face validity, being motivated by theory, 
not just by culling results from stepwise regression. 

No matter what we decide about the VxC factor by 
itself, the two components of this model are important 
when considered together. The idea of a rule-based, 
threshold, cognitive process versus a synergistic, fi ne-
discrimination process is certainly a useful heuristic to 
guide future research in decision making. It would apply 
broadly to all kinds of decision making, not just aviation 
weather research.

Now, fi nally, what to say about the infl uence of money? 
The absence of effects for the High Financial Incentive 
group was, oddly enough, an interesting result. More 
precisely, the base rate of 46.7% non-takeoffs (100–53.3) 
did imply a strong average weather effect (expected 
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p=145422675•.0714•.9316 ≅ 3•10-9). However, assuming 
reliable low-incentive fi ne VxC weather discrimination, 
then the inability to fi nd the same fi ne discrimination in 
the high incentive condition implied that the fi nancial 
incentive completely destroyed this. This absence of fi ne 
discrimination was important. It implied that, as soon 
as money entered the picture, all distinction between 
various degrees of bad weather ceased. In plain language, 
money probably disables fi ne discrimination, at least as 
far as weather goes. These results may generalize to many 
other domains as well. We certainly know, anecdotally, 
that people do all kinds of foolish things for money. Here 
we see just one example of that general principle.

To wrap this up, the Part I results were not fatally 
fl awed by the large number of candidate predictors. 
However, the problem of antecedent overfi tting did need 
to be factored in. Once it was, then we had a much more 
honest picture of what was likely to be reliable.

CONCLUSIONS

Overfi tting is a common problem in regression studies. 
During the course of our weather research, we discovered 
that there are at least two major kinds of overfi tting,8 
which we subsequently chose to call antecedent and 
postcedent overfi tting.  “Antecedent” refers here to the 
situation existing prior to data analysis, after candidate 
predictors have been measured, but before modeling 
starts. “Postcedent” refers to the situation after modeling 
concludes. Postcedent overfi tting, therefore, refers to the 
situation where too many predictors were included in a 
given regression model. Antecedent overfi tting refers to 
the situation where too many candidate predictors were 
present before modeling began.

Postcedent overfi tting is universally known. Anteced-
ent overfi tting is known to statistical theorists and in a 
few domains such as economics but is quite new to us 
in the social sciences. Hopefully, the remainder of the 
research community will follow the lead of Foster, Stine, 
and others in treating this as a serious issue. Antecedent 
overfi tting was encountered here by accident and would 
have compromised the Part I study, had it not been 
recognized and confronted. Using a large number of 
candidate predictors does not have to be a fatal error. It 
just needs to be treated knowingly as part and parcel of 
the design and analysis in question.

From a practitioner viewpoint, there are basically 
two ways to handle antecedent overfi tting. First, we 
can minimize the problem ahead of time by limiting 
the number of candidate predictors we measure. Sec-
ond, we can deal with it post hoc, by running custom 
Monte Carlo simulations set up with the same number 
of cases (n), candidate predictors (p), model predictors 
(k), and success ratios (S ) as the experimental data. 
The predictivity and R2 mean scatterplots of these 
custom simulations will allow a rough estimate of .95 
confi dence intervals, against which we can compare 
the actual predictivity and R2 of our real-data models. 
This is essentially an ad hoc way of doing what Rencher 
and Pun (1980) did in closed form for standard least-
squares regression.

The admitted problem with trying to limit p is that 
there is not yet a truly simple, reliable rule of thumb to do 
it, and to create one is beyond the scope of this paper and 
the mission of this research. What we are talking about 
is fi nding mathematical functions of the form μ

.95
= f(p, 

k, n, S) that could accept four numbers as input, and 
then tell us the values for predictivity and R2 we would 
have to exceed to get 95% reliability in spite of p. This is 
a 4–dimensional function and would require hundreds 
of thousands of Monte Carlo simulations to cover a full 
range of values for all four dimensions.

The problem with the post hoc approach is that it 
means running the experiment and then worrying about 
whether the results are reliable or not. What do we do if 
we fi nd “signifi cant” predictors that later totally fail stricter 
Monte Carlo-based signifi cance tests? As we saw, this was 
not hard to do, particularly when predictivities in the 80-
90% range could be the result of random numbers.

In the end, this process of estimating p is obviously a 
tradeoff, but one we are uncertain about at this point in 
time. The short answer is that there probably are “sweet 
spots” representing suffi cient predictors to be useful 
without sacrifi cing too much in the way of reliability. We 
simply do not know what those numbers are yet. In the 
meantime, the rule of thumb can only be something like 
“Use the smallest predictor set possible, probably ten or 
less.” Failing this, if many predictors are intentionally used 
on a fi rst pass, then it should be followed up with a con-
fi rmatory study testing the ten or so strongest. Anything 
that survives both studies is likely to be authentic.
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ENDNOTES

1 In this report, the word “predictivity” is used as a proxy for the 
formal statistical terms sensitivity and specifi city (R.A. Stine, 
personal communication, March 16, 2004). Sensitivity here 
refers to the number of correctly predicted takeoffs. Specifi city 
is the number of correctly predicted non-takeoffs. In signal 
detection theory, these would be Hits and Correct Rejections, 
respectively. So predictivity = (sensitivity + specifi city)/(total 
cases). We use predictivity primarily to simplify description of 
overall model performance by using a single term to describe 
“total takeoffs and non-takeoffs that a given model correctly 
predicted.”
2 R.A. Stine (personal communication, March 16, 2004) 
points out that the order of entering model predictors does 
not matter; therefore there are only 1/6 as many models as 
there otherwise would be.
3 Technically, this depends on how the model is set up. For 
instance, it can be set up to hill-climb in likelihood ratio space 
(or hill-descend in Wald p space). But, for ease of understand-
ing, it is easier to talk about hill-climbing in predictivity space, 
and it is nearly as accurate.
4 Because it is based on likelihood ratio estimates, and not 
strictly on sums of squares, not all statisticians agree that 
R2 is as meaningful in logistic regression as it is in standard 
regression.
5 Bootstrapping has various and special meanings within 
statistics. Here, we are merely using it in the sense of “haul-
ing yourself up by your own bootstraps,” that is, to get some 
process off and running.
6 R.A. Stine (personal communication, March 16, 2004) points 
out that this PIN was “...essentially...the AIC criterion (Akaike 
Information Criterion)...AIC has problems with overfi tting in 
[the] context of a ‘wide’ data set (one with as many or more 
columns as rows).” Here, our rows were pilots (n=30) and 
columns were the pseudo-predictors (n=60).
7 The fi nal Low Financial Incentive group data represent two 
outliers being dropped because the pilots had made statements 
implying they had not taken the study seriously, so n was 
reduced from 30 to 28.
8 There is also a third, which might be called “manifold overfi t-
ting.” This involves the issue of adjusting model signifi cance 
based on the number of models explored. The more models 
we test, the more likely some are to be “signifi cant” by chance. 
Stine (personal communication, January 26, 2004) suggests a 
Bonferroni-type correction for this. To oversimplify, Bonfer-
roni approaches adjust the critical signifi cance (e.g.  =.05) by 
dividing it by the number of elements tested (for our purposes, 
the number of models explored). Needless to say, Bonferroni 
corrections favor modeling based on theory, and greatly penalize 
“shotgun” approaches where many models are examined with 
no underlying theory at all.
9 Note: You must be a registered SPSS user to access the SPSS 
technical support site. 
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Figure 1. A signal that superficially looks very complex can actually be broken down into 
three simple components, f1, f2, and f3.

Table 1. An abbreviated view of sample simulated 
predictor scores for n=30 “pilots,” each of which “took 
off” (1) or did not (0), and also had 60 simulated 
predictor scores. 

Pilot Takeoff Predictor #
(case) # 0=No, 1=Yes 1 2 3 ... 60

1 0 3.72 5.24 6.28 ... 6.73
2 0 4.77 6.10 3.91 ... 3.31

... ... ... ... ... ... ...
30 1 4.63 4.67 4.63 4.91
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Figure 2. A graph of the three best pseudo-
predictor scores. The y-axis represents score 
values. Each of the 30 pilots listed on the x-axis has 
three random-number score values on the y-axis. 
These random scores, entered into a regression 
model, seemed capable of predicting takeoff at 
better than chance level. 
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Table 2. Summary statistics for Monte Carlo simulation of logistic regression 
modeling. The N=60 data were divided into two n=30 groups by Financial Incentive.
The most important result is that average predictivities (μ, in gray) all exceeded the 
chance level of .50, even though the input predictor scores were essentially random 
numbers. This is an unwanted artifact of stepwise regression. 

Low  Financial Incentive group High Financial Incentive group
Success ratio of  takeoffs = 0.300 Success ratio of  takeoffs = 0.533

DATA models w ith constant w ithout constant models w ith constant w ithout constant
Run # correct preds Nagel R2 correct preds Nagel R2 correct preds Nagel R2 correct preds Nagel R2

1 0.767 0.529 0.900 0.822 0.733 0.369 failed
... ... ... ... ... ... ... ...

100 0.867 0.508 0.700 0.575 0.733 0.474 failed
RESULTS

μ 0.83 0.53 0.84 0.67 0.76 0.48
σ 0.05 0.12 0.05 0.09 0.05 0.10

skew -0.27 0.19 -0.47 0.09 0.39 0.98
SEskew 0.24 0.24 0.24 0.24 0.24 0.24
pskew 0.13 0.22 0.027 0.35 0.051 0.000
kurt 0.07 -0.50 0.44 0.26 0.21 2.15

SEkurt 0.48 0.48 0.48 0.48 0.48 0.48
pkurt 0.44 0.15 0.18 0.29 0.33 0.000

CI .95 ≅.92 ≅.72 ≅.92 ≅.82 ≅.85 ≅.64

Table 3. Results from the Part I study, showing best models for the Low 
and High Financial Incentive groups. “Best” was defined as a 
combination of low Wald p-value, high predictivity, and model simplicity. 
Experience shows that models lacking all three qualities often fail to 
perform reliably on new data. 

Data set p takeoffs Best model found Wald p Predictivity
Low  $ Incentive Visib ility x Ceiling .008

N=28 0.250 Constant .003 85.7%

High $ Incentive Financial Motivation (buck_mot)
N=30 0.533  x Predictor P ≈ .04 ≈ 75%

Constant

Table 4. If we run the same models with random 
numbers many times, the average (μ)
predictivities, R2s, and upper confidence intervals 
(CI .95) give us baselines against which to 
compare the reliability of models based on actual 
human data. 

Low  Fin. Incentive group High Fin. Incentive group
models w ith constant models w ith constant
Predictivity Nagel R2 Predictivity Nagel R2

μMonteCarlo 80.4 0.36 76.3 0.48
CI .95 ≅.89 ≅.59 ≅.85 ≅.64

μActualData 85.7 0.52 75 0.28
α estimated 0.16 0.08 NS NS
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Figure A1. Frequency counts for Monte Carlo simulations, SPSS forward stepwise logistic 
regression, 30 cases, 60 predictors. Because predictivity and R2 are range-limited, 0-1, we do 
not expect these distributions to be normal. They behave more like beta functions, the 
distributions often being bunched up to either the right or the left. Here we can visually see 
this happening. 
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APPENDIX B 
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Figure B1. Scatterplots of predictivity and Nagelkerke R2 values obtained during the n=30 
Monte Carlo simulations (before outliers were eliminated in the Low Financial Incentive group). 
The x-axis is the simulation number, 1 being the first simulation and 100 the last, for that 
combination of conditions. The y-axis is the corresponding value of predictivity or R2 obtained 
when running each model with random numbers. These scatterplots allow us to estimate the 
95% confidence interval (.95 CI) by inspection (the dashed line on each plot).  We can then 
test an empirically obtained value of predictivity or R2 by seeing if it meets or exceeds the 
appropriate .95 CI value. 
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Table B1. The scatterplot estimates of Figure 4, arranged in table form. Table 2 contains 
the same data. 

Low Financial Incentive group High Financial Incentive group
models with constant without constant models with constant without constant

correct preds Nagel R2 correct preds Nagel R2 correct preds Nagel R2 correct preds Nagel R2

CI .95 ≅.92 ≅.72 ≅.92 ≅.82 ≅.85 ≅.64 failed

Finally, we present one last set of Monte Carlo estimates. We examined one n=28 model, having 
determined the need to eliminate two outliers in the Low Financial Incentive group. This led to a model 
Visibility x Ceiling + constant, with takeoff proportion = .25, and the following scatterplots: 

Low  Incentive Predictivity (w ith constant) VxC + k
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Figure B2. Scatterplots used in the Part I study to re-estimate predictivity and R2 after the 
elimination of two outliers in the Low Financial Incentive group. 
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APPENDIX C 

Below is an example of the SPSS syntax used to generate random numbers and run the logistic 
regression simulations. GET FILE only had to be called once. Otherwise, the rest of the commands were 
repeated, to execute in batches of ten simulations per run. Here, the syntax is arranged in two columns, to fit 
on a single page. To actually run this syntax, it needs to be arranged in one, continuous column.

GET FILE = 'c:\Billy Bob\Math & 
Statistics\Logistic Regression\zoot.sav'. 
COMPUTE p1=RV.NORMAL(5,1). 
COMPUTE p2=RV.NORMAL(5,1). 
COMPUTE p3=RV.NORMAL(5,1). 
COMPUTE p4=RV.NORMAL(5,1). 
COMPUTE p5=RV.NORMAL(5,1). 
COMPUTE p6=RV.NORMAL(5,1). 
COMPUTE p7=RV.NORMAL(5,1). 
COMPUTE p8=RV.NORMAL(5,1). 
COMPUTE p9=RV.NORMAL(5,1). 
COMPUTE p10=RV.NORMAL(5,1). 
COMPUTE p11=RV.NORMAL(5,1). 
COMPUTE p12=RV.NORMAL(5,1). 
COMPUTE p13=RV.NORMAL(5,1). 
COMPUTE p14=RV.NORMAL(5,1). 
COMPUTE p15=RV.NORMAL(5,1). 
COMPUTE p16=RV.NORMAL(5,1). 
COMPUTE p17=RV.NORMAL(5,1). 
COMPUTE p18=RV.NORMAL(5,1). 
COMPUTE p19=RV.NORMAL(5,1). 
COMPUTE p20=RV.NORMAL(5,1). 
COMPUTE p21=RV.NORMAL(5,1). 
COMPUTE p22=RV.NORMAL(5,1). 
COMPUTE p23=RV.NORMAL(5,1). 
COMPUTE p24=RV.NORMAL(5,1). 
COMPUTE p25=RV.NORMAL(5,1). 
COMPUTE p26=RV.NORMAL(5,1). 
COMPUTE p27=RV.NORMAL(5,1). 
COMPUTE p28=RV.NORMAL(5,1). 
COMPUTE p29=RV.NORMAL(5,1). 
COMPUTE p30=RV.NORMAL(5,1). 
COMPUTE p31=RV.NORMAL(5,1). 
COMPUTE p32=RV.NORMAL(5,1). 
COMPUTE p33=RV.NORMAL(5,1). 
COMPUTE p34=RV.NORMAL(5,1). 
COMPUTE p35=RV.NORMAL(5,1). 
COMPUTE p36=RV.NORMAL(5,1). 
COMPUTE p37=RV.NORMAL(5,1). 
COMPUTE p38=RV.NORMAL(5,1). 
COMPUTE p39=RV.NORMAL(5,1). 
COMPUTE p40=RV.NORMAL(5,1). 
COMPUTE p41=RV.NORMAL(5,1). 
COMPUTE p42=RV.NORMAL(5,1). 
COMPUTE p43=RV.NORMAL(5,1). 
COMPUTE p44=RV.NORMAL(5,1). 
COMPUTE p45=RV.NORMAL(5,1). 
COMPUTE p46=RV.NORMAL(5,1). 

COMPUTE p47=RV.NORMAL(5,1). 
COMPUTE p48=RV.NORMAL(5,1). 
COMPUTE p49=RV.NORMAL(5,1). 
COMPUTE p50=RV.NORMAL(5,1). 
COMPUTE p51=RV.NORMAL(5,1). 
COMPUTE p52=RV.NORMAL(5,1). 
COMPUTE p53=RV.NORMAL(5,1). 
COMPUTE p54=RV.NORMAL(5,1). 
COMPUTE p55=RV.NORMAL(5,1). 
COMPUTE p56=RV.NORMAL(5,1). 
COMPUTE p57=RV.NORMAL(5,1). 
COMPUTE p58=RV.NORMAL(5,1). 
COMPUTE p59=RV.NORMAL(5,1). 
COMPUTE p60=RV.NORMAL(5,1). 
LOGISTIC REGRESSION TAKEOFF WITH 
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 
p13 p14 p15 p16 p17 p18 p19 p20 p21 p22 
p23 p24 p25 p26 p27 p28 p29 p30 p31 p32 
p33 p34 p35 p36 p37 p38 p39 p40 p41 p42 
p43 p44 p45 p46 p47 p48 p49 p50 p51 p52 
p53 p54 p55 p56 p57 p58 p59 p60 
/METHOD FSTEP(LR) 
/CRITERIA   PIN(.15) POUT(.20) CUT(.5) 
/PRINT SUMMARY.




