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Executive Summary

The Federal Aviation Administration (FAA) has initi-
ated efforts to improve weather information, forecasting, 
and dissemination to enhance both safety and operational 
efficiency. In addition, the FAA has adopted the System 
Airport Efficiency Rate (SAER) as a metric of facility 
operating efficiency that adjusts for weather influences. 
Previously, these metrics failed to account for weather con-
ditions. Obviously, airports cannot control the weather, and 
so reductions in efficiency due to bad weather conditions 
produced artificially deflated efficiency rates. The SAER 
accounts for weather by using either actual demand or 
the facility-set arrival rate as the denominator, reflecting 
a reduction in the published ability to handle departures 
or arrivals due to prevailing weather conditions.

Interventions aimed at improving performance should 
be observable in our metrics. However, acceptance and 
widespread use of the SAER raises the question of whether 
a weather-adjusted measure is sensitive enough to evaluate 
the efficacy of interventions aimed at improving perfor-
mance during inclement weather. One such intervention is 
the Integrated Terminal Weather System (ITWS). ITWS 
was designed to “provide a suite of weather informational 
products for improving air terminal planning, capacity, 
and safety” (Evans & Ducot, 1994, p. 449). In the present 
study, we applied time series analysis to average daily and 
monthly SAERs at 13 airports. We modeled SAER data 
at each airport prior to ITWS implementation and then 
tested whether each ITWS build (i.e., subsequent software 
updates and added functionality) affected SAER values.

Time series analysis was selected because weather tends 
to follow a seasonal pattern, and these patterns might 
be mistaken for effects due to some type of interven-
tion (e.g., implementation of new automation). In time 
series analysis, data are statistically modeled to remove 
general trends, the lingering effects of previous scores, and 
persistent effects of preceding random errors. Once the 
outside sources of systematic variation have been removed, 
interventions can be tested effectively.

Two time series analyses were conducted for each 
airport in the sample. The first analysis used daily 
SAER values as the dependent variable to capitalize 
on the variance and specificity of daily measures. The 
second used monthly averages, making it possible to 
evaluate the seasonal aspects of the data. Though some 
statistically significant effects were found (both positive 
and negative), the patterns of these effects were not 
consistent enough to draw any definite conclusions 
about the efficacy of the ITWS implementation. 
However, the fact that we were unable to make a clear 
determination about the effectiveness of ITWS imple-
mentation is, in itself, an important finding regarding 
the SAER as a metric. Though the SAER is clearly 
doing what it was intended to do on a daily basis, it 
may “control out” the variance needed to detect the 
consequences of interventions. In general, capacity 
measures and related metrics have a propensity for 
“ceiling effects.” That is, they represent proportions 
with a restricted range (e.g., between 90 and 100, 
with a goal exceeding 95). The results of these analy-
ses suggest that such measures may be ill-suited for 
testing interventions. Thus, it is imperative that the 
raw data from which they are derived (e.g., numbers 
of operations proposed and accomplished, minutes 
of delay, indices of weather conditions, published 
facility limits) remain readily available to evaluate the 
efficacy of changes to the system. We must consider 
what data and metrics we will use to evaluate system 
improvements as we plan and implement them, be-
cause simply monitoring facility and system effective-
ness measures may obscure or discount intervention 
effects. This implies a requirement for the future: As 
we pursue the concepts, technologies, and procedures 
necessary to Next Generation Air Traffic capabilities, 
it is absolutely vital that we also plan for their assess-
ment and evaluation.
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Time Series Analyses of Integrated Terminal Weather System 
Effects on System Airport Efficiency Ratings

Separating traffic from adverse weather, particularly 
convective activity, is necessary for safe operations. Adverse 
weather conditions disrupt the orderly flow of traffic, 
constituting a major source of aircraft delays. Thus, 
weather remains a significant risk factor for National 
Airspace System (NAS) safety and capacity. The Federal 
Aviation Administration (FAA), often in collaboration 
with the National Weather Service, has pursued a num-
ber of initiatives to improve weather information, fore-
casting, and dissemination to enhance both safety and 
operational efficiency. Each initiative has been pursued 
with promises of increasing safety and decreasing delays. 
Decisions to move forward with these projects have been 
based on reasonable, data-based expectations of meeting 
those promises.

As programs are designed, managers make implemen-
tation decisions based on expected or projected delay 
reductions. Evans, Allen, and Robinson (2004) evaluated 
some of the challenges of assessing these initiatives and the 
systems that result from them. They noted that both direct 
measurement and decision modeling methods have been 
used to project and quantify system effectiveness. Direct 
measurement generally involves measuring delays before 
and after implementing a prototype or operational system. 
Unfortunately, this approach is vulnerable to what Cook 
and Campbell (1979) have described as “history effects,” 
where some other significant event or random variations 
before and after implementation is the actual cause of 
observed changes. In air traffic control systems, differ-
ences in weather severity and duration between baseline 
and test periods are the most likely alternative influences, 
but changes in procedures and flow control may have an 
effect as well. Decision modeling is typically accomplished 
through interviews of system users to generate estimates 
of reductions. These estimates are then used to project 
local system effects. When making deployment decisions 
prospectively, this is often the only method available. 
However, these projections should be validated against 
objective metrics following implementation.

A Measure of Efficiency, Controlling for Weather Variance 
The FAA has developed several measures of the reli-

ability and efficiency of its services to control costs and 
fairly allocate those costs to the users or the public. Until 
recently, airport and NAS efficiency metrics failed to ac-
count for weather conditions. Obviously, airports cannot 
control the weather, and so reductions in efficiency due 
to bad weather conditions produced artificially deflated 

efficiency rates. It is true that on-time arrivals and delays 
are partly a function of the efficiency of the air traffic 
system, but they are also influenced by congestion at 
specific airports, variance in scheduling and performance 
of air carriers, and the severity and duration of weather 
conditions. Differences in delays between two time pe-
riods may be more a function of variance in weather in 
the two periods than in the efficiency of the air traffic 
system. To assess and address the influence of inclement 
weather on airport efficiency rates, Wine (2005, 2006) 
led a group tasked with developing metrics that would 
control for weather variance. The results of their efforts 
include the Arrival Efficiency Rate (AER), Departure Ef-
ficiency Rate (DER), and the System Airport Efficiency 
Rate (SAER), which are routinely calculated for 75 
airports in the United States using the Aviation System 
Performance Metrics system (ASPM). The AER is the 
percentage of actual arrivals that are greater than or equal 
to either the arrival demand or the facility-set arrival rate, 
and it assesses how well the demand for arrivals is met. 
The DER is the percentage of actual departures that are 
greater than or equal to either the departure demand or 
the facility-set departure rate, and it assesses how well 
departure demand is met. The SAER is a weighted (by 
demand) average of the AER and DER. The SAER ac-
counts for weather by using either actual demand or the 
facility-set arrival rate as the denominator, reflecting a 
reduction in the published ability to handle departures 
or arrivals due to prevailing weather conditions. The 
ASPM system also collects ceiling, visibility, and wind 
information to facilitate the calculation of the SAER in 
nominal, moderate, and severe weather conditions. 

The SAER has been incorporated into Air Traffic Or-
ganization (ATO) metrics (Lewis, 2006). (For instance, 
ATO has set a goal of achieving an average daily SAER 
of 95.25 %.) The SAER is averaged over time and across 
airports and posted on the Internet daily at 
www.ato.faa.gov/DesktopDefault.aspx?tabindex=6&tabid=8.

SAER data have been available by subscription at 
www.apo.data.faa.gov for 55 airports since 2000 and an 
additional 20 airports since 2004. Data may be collected 
for each quarter hour or averaged by hour, day, or month 
and may be broken out by weather condition. As the SAER 
gains prevalence as the accepted metric, the question of 
whether the SAER is sensitive to interventions intended 
to reduce delays and improve efficiency under adverse 
weather conditions becomes increasingly important.
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ITWS Implementation
One such intervention is the Integrated Terminal 

Weather System (ITWS). Evans and Ducot (1994) 
described ITWS as being designed to “provide a suite 
of weather informational products for improving air 
terminal planning, capacity, and safety” (p. 449). ITWS 
integrates data from FAA and National Weather Service 
(NWS) sensors and information systems into displays 
of current and predicted weather conditions. With these 
displays, controllers and facility managers can make more 
efficient decisions to route traffic, predict when approach 
and departure paths and runways will become usable or 
unusable, and predict the arrival of significant weather 
over key arrival gates, the terminal area, and the airport. 
Alerted or displayed conditions include microbursts, gust 
fronts, storm location and motion, storm cells, winds in 
the terminal area, and tornados.

Evaluation of ITWS Impact 
ITWS entered full operational use in 2003 (Evans et 

al., 2004). Weiss, Benner, and Carty (2004) conducted an 
analysis of functional testing, user perception of product 
utility, and workload effects. Auditing functions against 
specifications, they documented specific functional 
deficiencies and recommended methods for resolution. 
Interviewing users, they reported that Gust Front, Ter-
minal Winds, Storm Motion, and Precipitation products 
were most useful for air traffic users. However, users rated 
all products and functions as “frequently to consistently” 
enhancing job performance. Further, controller-perceived 
workload decreased after system introduction.

Evans et al. (2004) reported delay reduction achieved 
or achievable with ITWS using decision modeling tech-
niques based on user feedback. Their results suggested 
that ITWS would reduce delays by “anticipation of the 
closing and reopening of arrival and departure fixes, an-
ticipation of convective weather effects on runways and 
runway configurations, optimization of traffic patterns 
within the TRACON, optimization of airline operations, 
and higher effective capacity during thunderstorms” 
(pp. 12-13). Expected delay reduction per aircraft on 
a thunderstorm day was approximately 1.1 minutes. 
This degree of reduction may seem trivial, but given 
the number of aircraft operating into and out of each 
airport, number of thunderstorm days, and number of 
airports, the cumulative effect translates into significant 
increases in capacity and reductions in cost of operations, 
such as fuel consumed during the delay. For example, 
initial estimates of ITWS benefits for the New York area 
were approximately $30M per year. ITWS benefits were 
assessed by direct measurement at Atlanta. According to 
Evans et al. (2004):

The difference between average flight times on thunder-
storm days and average flight times on non-thunderstorm 
days was about 5 minutes, which for 2003 could be viewed 
as corresponding to the average delay per aircraft due to 
thunderstorms with ITWS in operation. Since the expected 
delay reduction on such days was about one minute, this 
suggests that the ITWS delay reduction benefit for airborne 
arrival delay corresponds to about 16% of the before 
ITWS airborne arrival delay. The comparison between 
thunderstorm day average flight times shows a decrease 
of approximately one minute from 2001 to 2003, which 
is consistent with the predicted arrival delay reduction of 
one minute (pp 23-24).

However, the authors cautioned that their results did 
not necessarily provide proof of any benefit, due to the 
variance in the number of thunderstorm days, flight times 
(even on good weather days), and holding time in the 
terminal area between the two periods. They also cautioned 
that airports appear to differ significantly in benefit due 
to variations in the number of thunderstorm days and 
degree of congestion at the airport and surrounding area. 
The influence of 9/11 on the comparison must also be 
considered – numbers of flights dropped sharply in late 
2001 and recovered slowly through 2005.

Assessing ITWS Impact Using SAER via Time Series 
Analysis

As an agency, we would hope that interventions aimed 
at improving performance would be observable in our 
metrics. However, there is reason to question this. Are 
our metrics sensitive enough to detect an average one-
minute of delay savings on thunderstorm days? For 
metrics uncontrolled for weather, would the savings be 
overwhelmed by variance caused by the thunderstorms 
themselves? For metrics controlling for weather condi-
tions, would the savings be obscured by improvements in 
facility-set arrival rates that are used in their calculation? 
As consumers and users of new technology, we want our 
methods of assessing changes to the system to be suffi-
cient. Do “history effects” and other influences degrade 
the validity of our current methods of assessments (such 
as the concerns offered by Evans and coworkers [2004] 
regarding variance that might be attributable to ITWS 
implementation and what may be attributable to other 
factors)? Can we assess the efficacy of weather systems 
without controlling for seasonal patterns in the data? All 
these questions fall under two basic categories: method-
ological and empirical. Fortunately, both can be tested 
using the same procedure. In time series analysis, data are 
statistically modeled to remove the lingering effects of 
previous scores, general trends, and the lingering effects 
of preceding random errors. Once outside sources of 
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systematic variation have been removed, interventions 
may be tested to determine whether they have an effect. 
The question of whether documented or modeled effects 
of ITWS can be observed in higher level data streams is 
ideal for such an analysis. In the present study, we applied 
time series analysis to average daily and monthly SAERs 
at 13 airports. We modeled SAER data at each airport 
prior to ITWS implementation and then tested whether 
each ITWS build (i.e., subsequent software updates and 
added functionality) affected the SAER. Where build 
effects were statistically significant, we estimated the 
magnitude of the effect.

Method

Data
The dependent variable was daily SAERs obtained from 

the ASPM database for January 1, 2000 through June 
30, 2006. The SAER represents the weighted average (by 
demand) of departure and arrival efficiency rates. Inde-
pendent variables comprised the initial ITWS commis-
sion date (tested as the first intervention) and subsequent 
ITWS builds (treated as additional interventions). Only 
airports available in the ASPM database with identifiable 
ITWS commission dates were included in the analyses. 
Thus, Kansas City and Houston were excluded because a 
definitive commission date could not be determined. Or-
lando, Dallas-Fort Worth, Memphis, and New York were 
also excluded from the study because these facilities had 
prototype versions of ITWS implemented before 2000. 
Airports included in the analysis were: Hartsfield - Jackson 
Atlanta International (ATL), Logan International (BOS), 
Baltimore-Washington International (BWI), Douglas 
International (CLT), Ronald Reagan Washington Na-
tional (DCA), Denver International (DEN), Hollywood 

International Ft. Lauderdale (FLL), Washington Dulles 
International (IAD), Miami International (MIA), Min-
neapolis - St. Paul International (MSP), Chicago O’Hare 
(ORD), Palm Beach International (PBI), and Lambert 
St. Louis International (STL). ATL, FLL, MIA, ORD, 
PBI, and STL had nine ITWS builds installed after the 
initial commission date; DEN had one additional ITWS 
build; BOS, BWI, CLT, DCA, and IAD had two builds; 
and MSP had three. ITWS build dates (labeled ITWS1 
through ITWS10) are provided in Table 1. Note that 
initial ITWS builds are not equivalent for all airports. 
Facilities with later installation dates (i.e., facilities with 
less than ten deployments) received the ITWS build that 
was current at the time of the deployment. Therefore, the 
first build date is only located in the ITWS1 column for 
facilities that received all ten builds. For other facilities it 
is located in the column corresponding to the appropri-
ate ITWS build.

Results

Two interrupted time series analyses were conducted 
for each airport in the sample. The first analysis used daily 
SAER values as the dependent variable. The second used 
monthly averages. Analysis of daily SAERs capitalized 
on variance and specificity of daily measures whereas 
monthly sampling made it possible to evaluate seasonal 
aspects of the data. Intervention codes for the daily 
SAERs were initialized on the date of ITWS deployment. 
For the monthly SAERs, with the exception of ITWS5, 
intervention codes were initialized on the month of 
ITWS deployment. Because ITWS5 was deployed late 
in the month (i.e., 5/30/2004), the intervention code 
was initialized on the following month.

Table 1. 

Integrated Terminal Weather System (ITWS) Commission Dates 

ITWS1 ITWS2 ITWS3 ITWS4 ITWS5 ITWS6 ITWS7 ITWS8 ITWS9 ITWS10 

ATL 10/27/03 1/5/04 4/19/04 5/4/04 5/30/04 8/4/04 11/7/04 1/12/05 8/9/05 4/17/06
BOS (ITWS8)       1/13/05 8/9/05 4/17/06
BWI (ITWS8)       3/17/05 8/9/05 4/17/06
CLT (ITWS8)       1/26/05 8/9/05 4/17/06
DCA (ITWS8)       3/17/05 8/9/05 4/17/06
DEN (ITWS9)        9/15/05 4/17/06
FLL 12/4/03 1/5/04 4/19/04 5/4/04 5/30/04 8/4/04 11/7/04 1/12/05 8/9/05 4/17/06
IAD (ITWS8)       3/17/05 8/9/05 4/17/06
MIA 12/4/03 1/5/04 4/19/04 5/4/04 5/30/04 8/4/04 11/7/04 1/12/05 8/9/05 4/17/06
MSP (ITWS7)      1/4/05 1/12/05 8/9/05 4/17/06
ORD 10/23/03 1/5/04 4/19/04 5/4/04 5/30/04 8/4/04 11/7/04 1/12/05 8/9/05 4/17/06
PBI 12/4/03 1/5/04 4/19/04 5/4/04 5/30/04 8/4/04 11/7/04 1/12/05 8/9/05 4/17/06
STL 12/10/03 1/5/04 4/19/04 5/4/04 5/30/04 8/4/04 11/7/04 1/12/05 8/9/05 4/17/06
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Model identification and estimation were performed on 
the pre-ITWS baseline data before testing the intervention 
effect of ITWS. Due to the different commission dates, 
some airports had more baseline data available than others. 
However, all airports had at least three and a half years of 
daily baseline data available for model identification. Model 
identification was expedited by the SPSS 14.0 Time Series 
Modeler procedure. The “Expert Modeler” automatically 
identifies and estimates the best-fitting Auto-regressive 
Integrated Moving Average (ARIMA) model for the data, 
thus eliminating the need to identify an appropriate model 
through trial and error alone. In some cases the procedure 
suggested a model that failed to adequately fit the data. In 
these instances, parameter adjustments were made, follow-
ing recommendations by Tabachnick and Fidell (2005), 
until a satisfactory model was identified.

Parameter identification proved to be more difficult 
for daily SAERs than for monthly averages. This may 
have been due to underlying seasonality that could not be 
incorporated into models based on daily SAERs. Figure 
1 contains daily SAERs and monthly SAER averages for 
Hartsfield-Jackson Atlanta International (ATL). Notice the 
distinct dips occurring between May and July and again 
from December through January. Most airports in the 
sample had similar seasonal patterns. Only DEN, MIA, 
MSP had no discernable seasonality.

Despite difficulties surrounding parameter estimation 
for daily models, auto-regressive and moving average 
parameters differed significantly from zero (p < .01) for 

all selected daily and monthly models (see Tables A1-A13 
in Appendix A). Model evaluation was accomplished by 
examination of autocorrelation and partial autocorrelation 
functions. Tables containing autocorrelation functions 
(ACFs) and Box-Ljung statistics are listed in Appendix 
B. Significance values of the Box-Ljung statistic at each 
lag (or, the time period between observations) indicate 
the probability that the observed autocorrelation is ran-
dom. In all but one case, patterns of residuals indicated 
that sequential contingencies had been removed by the 
selected model parameters. However, several significant 
autocorrelations remained after application of the model 
for the daily PBI sample (see lags 10-16 in Table B12). 
One or two significant Box-Ljung values within the first 
16 lags might be expected, but significant autocorrelations 
in excess of that suggests a non-random series (Seiler & 
Rom, 1997). Thus, it is clear that a sequential (possibly 
seasonal) pattern remained in the PBI daily sample after 
the model was applied. The monthly PBI model demon-
strated no residual patterns once a seasonal pattern was 
identified and removed.

Parameter estimates for daily and monthly SAER 
interventions are shown in Table 2. More detailed infor-
mation (i.e., parameter estimates, standard errors, t, and 
approximate significance values) is available in Appendix 
A. In the daily sample, positive intervention effects for 
ITWS9 were found for CLT (1.42, p<.05), DCA (1.93, 
p<.05), MIA (1.94, p<.05), and PBI (1.71, p<.01). A posi-
tive intervention effect for ITWS6 was found for ORD 
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Figure 1. Hartsfield-Jackson Atlanta International (ATL): Daily and Monthly SAERs
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(2.90, p<.05). There were also a number of significant 
negative effects noted in this sample. The ITWS1 had 
a significant negative effect on the daily SAER for PBI 
(-2.02, p<.01), and ITWS4 had a significant negative 
effect for ORD (-4.07, p<.05).

In the monthly sample, the same pattern of nega-
tive ITWS1 (-1.66, p<.05) and positive ITWS9 (1.93, 
p<.01) effects remained for PBI. In addition, there was 
a significant positive effect for ITWS4 (1.52, p<.05) for 
this airport. Other positive intervention effects noted in 
the daily sample failed to demonstrate statistical reliability 
after seasonal elements were incorporated into the monthly 
models. On the other hand, negative intervention effects 
of ITWS5 (-2.39) for FLL and negative intervention ef-
fects for ITWS10 (-2.52) for IAD increased to statistically 
significant (p<.05) levels.

Discussion

The first step in interrupted time series analysis is to 
identify and remove systematic variation in the pre-in-
tervention data. Pre-existing systematic patterns cannot 
logically be an effect of an intervention. The basic as-
sumption is that after all systematic variance (e.g., general 
trends of increasing or decreasing value, repetitive seasonal 
variation) has been removed, only “white noise” remains. 
Successful modeling is reflected by a lack of significant 
autocorrelations among the residuals. With the exception 
of the daily SAER series at PBI, all residual autocorrela-
tion functions were non-significant. The residuals for 
the monthly series at PBI were non-significant after a 
seasonal trend was identified and removed. 

Once satisfactory models of pre-intervention data are 
achieved, one tests the effects of interventions on the 
subsequent data series. When the model is applied to 
post-intervention data, systematic changes may be at-
tributed to the intervention. Effective interventions have 
significant beta parameter estimates. For ITWS builds, an 
effective intervention would have a positive beta value, 
indicating an increase in the SAER following introduction 
of the build. A significant negative beta estimate for an 
ITWS build would indicate that the build was disruptive 
in some way, reducing SAER values.

From the summary information in Table 2, we might 
reasonably conclude that the build implemented on 
August 9, 2005 (ITWS9) had a positive effect of 1 to 2 
percentage points in the SAER because several significant 
positive beta values were observable in the results of the 
daily data for this intervention. However, we know that 
there are strong seasonal patterns (clearly demonstrated 
by the significant seasonal effects shown in the tables in 
Appendix A). Because the daily time series analyses did 
not include seasonal parameters in the models (a lag of 7, 

reflecting days of the week, cannot account for monthly 
patterns with a lag of 12), the daily analyses are vulner-
able to Type 1 (where a random variation is interpreted 
as an effect) and Type 2 (where an effect is dismissed 
as random variation) errors. This is best illustrated by 
examining the monthly trend line for ATL displayed in 
Figure 1. Note that the monthly average SAER dropped 
sharply between May and July and again from December 
through January. Higher values occurred during Septem-
ber, October, March, and April. So unless seasonality is 
removed, an intervention implemented in early summer 
is predisposed to show a positive effect, one implemented 
in early fall predisposed to a negative effect, and one 
implemented somewhere in between is predisposed to 
show no effect. Analysis of monthly averages detected and 
removed seasonal variation before testing the efficacy of 
ITWS builds. Consequently, it is likely that significant 
positive effects in the daily analyses that are not reflected 
in the monthly analyses represent Type 1 errors. We are, 
therefore, reluctant to interpret results for daily data 
except where an effect of comparable magnitude appears 
in monthly averaged data. Given this constraint, only 
effects at FLL, IAD, and PBI are interpretable:

FLL showed a negative impact of the ITWS build 
implemented on May 30, 2004 (ITWS5) of 2.39 
percentage points in SAERs. This build added warn-
ings of dry microbursts.
IAD showed a negative impact of the ITWS build 
implemented on April 17, 2006 (ITWS10) of 2.52 
percentage points. This was the last build measured 
in the study and added Terminal Convective Weather 
Forecasts.
PBI showed a negative impact for initial deployment 
on December 4, 2003 (ITWS1) and a positive im-
pact for ITWS builds implemented on May 4, 2004 
(ITWS3) and August 9, 2005 (ITWS9). No new tools 
were deployed in either of these builds, only software 
updates and corrections.

We might infer from these results that ITWS builds 
had both positive and negative effects on facility perfor-
mance. However, there are statistical, methodological, and 
metric-related issues that preclude reaching solid conclu-
sions in this regard. There were 80 hypotheses tested in 
the monthly sample (one for each ITWS build at each 
airport), and yet we found only five (6.25%) effects that 
approached a p<.05 significance level – a proportion that 
might be expected by chance alone.

The number of negative (significant and non-sig-
nificant) beta estimates suggests that the overall effect of 
ITWS might well be negative. However, this impression 
is probably the result of methodological (i.e., sampling) 
issues rather than an indication of the efficacy of the tool. 

•

•

•
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When considered in conjunction with the lags between 
ITWS builds, it becomes apparent that negative effects 
may simply reflect the disruptiveness of software changes. 
Lags ranged from one to four months for eight of the 
builds and between eight and thirteen months for the 
remaining two. Patterns of negative and positive effects 
observed in the data are consistent with initial disruption 
followed by adaptation. Unfortunately, we did not collect 
sufficient data after the last build to capture any positive 
effects that might have followed the adaptation period. 
The “series of builds” approach makes good sense from 
a software development perspective, but from a program 
evaluation perspective, a single build implementation or 
treating all builds as a single intervention would be better 
than examining the effect of a series of builds that add 
features or correct deficiencies.

Metric-related concerns involve the use of the SAER 
as a dependent measure. The SAER may control out 
variance attributable to the intervention. The SAER was 
developed as a metric to assess facility and system perfor-
mance, controlling for variation in weather. It uses either 
actual demand or the facility-set arrival and departure 
rates as the denominator of the statistic, a reduction in 
published ability to handle departures or arrivals due to 
prevailing weather conditions. Theoretically, it may be 
described as:

(Operations / (demand .or. limit)) * 100

Wine (2005) and Lewis (2006) described the SAER 
as a measure of a facility’s ability (and by extension, that 
of the air traffic system) to do what it says it can to. This 
is a good metric of overall performance, but at least two 
mechanisms may obscure the effect on this metric of 
interventions aimed at improving performance in adverse 
weather: metric components and ceiling effects.

Over a period where demand increases and capacity 
increases at the same rate of increase, the SAER will remain 
fairly constant (e.g., 57/60 = 67/70 = 95% SAER). If an 
intervention improves a facility or a system’s capability to 
meet increasing demand, the SAER will not reflect it. A 
similar issue arises for interventions improving performance 
during moderate or severe weather, like ITWS. If an inter-
vention allows an increase in facility limits (say from 35 to 
40 operations per hour), and the facility performs to the 
new limits, its SAER score may be no higher than when 
performing at the original limit (30/35 = 34/40 = 86% 
SAER). This would tend to mask the effect of an interven-
tion. Without examining the number of operations and 
limits used in each SAER calculation, we cannot determine 
whether ITWS implementation improved each facility’s 
capability to meet increasing demand.

The SAER’s ability to detect disruptions imperceptible 
to ITWS users (as they were not reported in previous 

ITWS test documentation) suggests that it is a sensitive 
measure. However, it may be more sensitive to decrements 
than to improvements (i.e., subject to ceiling effects). 
Wine (2005) and Lewis (2006) described the SAER as 
a measure of a facility’s ability (and by extension, that 
of the air traffic system) to do what it says it can do. Our 
analyses suggest that, in addition to reducing the num-
ber of operations completed, seasons that are subject to 
inclement weather tend to reduce the ability to predict 
performance. Interventions may influence both operations 
completed and predictability. The SAER measures more 
of the latter than the former when significant weather is 
present. Though the SAER is clearly doing what it was 
intended to do on a daily basis, its use as a metric for 
evaluating the effect of interventions – particularly those 
involving weather conditions – is not recommended. 
Other metrics routinely maintained by ATO (Lewis, 
2006) might be more appropriate in these instances. For 
example, the daily operations averaged over each month 
or average number of minutes of delay for each arrival 
could be treated as a time series. Published limits could 
be indexed by hour and serve as a covariate. Hourly codes 
for nominal, moderate, and severe weather could also be 
used as a covariate.

In sum, the fact that we were unable to make a clear 
determination about ITWS implementation is, in itself, 
an important finding regarding the SAER as a metric. 
Though the SAER appears to be effective for its in-
tended purpose (i.e., contributing to a suite of metrics 
that monitor system performance to control costs and 
fairly allocate those costs to the users or the public), its 
usefulness as a measure to evaluate intervention efficacy 
is limited. The strong seasonal patterns in SAER scores 
present a compelling argument for the need to control 
for seasonality when assessing proposed weather systems. 
This is underlined by differences between daily (in which 
seasonal patterns were not included in the model) and 
monthly (in which seasonal patterns were removed from 
the data) results. Regardless of the underlying metric, the 
use of some form of time series procedure is warranted 
to ensure that initiatives intended to improve weather 
information, forecasting, and dissemination have a 
genuine effect on safety and operational efficiency in 
the NAS. We must consider what data and metrics we 
will use to evaluate system improvements as we plan and 
implement them, because simply monitoring facility and 
system effectiveness measures may obscure or discount 
intervention effects. This implies a requirement for the 
future: As we pursue the concepts, technologies, and 
procedures necessary to Next Generation Air Traffic ca-
pabilities, it is absolutely vital that we also plan for their 
assessment and evaluation.
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A-1

ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

APPENDIX A 

ARIMA Parameter Estimates for Daily and Monthly SAER Samples by Airport 

Table A1. ARIMA Parameter Estimates: Hartsfield-Jackson Atlanta International (ATL)

Daily (N = 2373) 
ARIMA (1,0,2) Estimates S.E. t Approx. Sig. 

Non-Seasonal Lags AR1 .95 .03 34.85 .00
MA1 .61 .04 17.42 .00
MA2 .29 .02 11.81 .00

Regression Coefficients ITWS1 .62 .85 .74 .46
ITWS2 -.72 1.03 -.70 .48
ITWS3 -.10 1.53 -.06 .95
ITWS4 -2.10 1.58 -1.33 .18
ITWS5 .74 1.23 .60 .55
ITWS6 1.34 1.20 1.12 .26
ITWS7 .74 1.06 .69 .49
ITWS8 -1.66 .96 -1.73 .08
ITWS9 1.03 .69 1.49 .14
ITWS10 -.45 .92 -.49 .62

Constant 95.93 .21 456.94 .00
Monthly (N = 78) 

ARIMA (0,0,0)(0,1,1)12 Estimates S.E. t Approx. Sig. 
Seasonal Lags Seasonal MA1 .75 .22 3.48 .00
Regression Coefficients ITWS1 .25 .81 .31 .76

ITWS2 -.54 1.03 -.53 .60
ITWS3 -.30 1.27 -.23 .82
ITWS4 -1.25 1.34 -.93 .36
ITWS5 2.32 1.37 1.70 .10
ITWS6 -.98 1.30 -.75 .45
ITWS7 .09 1.04 .09 .93
ITWS8 -.41 .93 -.44 .66
ITWS9 .29 .58 .51 .61
ITWS10 .35 .80 .44 .66

Melard's algorithm was used for estimation. 



A-2

ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

Table A2. ARIMA Parameter Estimates: Logan International (BOS)

Daily (N = 2373) 
 ARIMA (1,0,2) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .97 .01 77.19 .00

MA1 .70 .02 28.91 .00
MA2 .20 .02 9.41 .00

Regression Coefficients ITWS1 -1.59 .83 -1.92 .06
ITWS9 1.19 1.02 1.16 .25
ITWS10 -.40 1.28 -.31 .75

Constant 95.24 .30 318.84 .00
Monthly (N = 78) 

ARIMA (0,0,1)(1,1,0)12 Estimates S.E. t Approx. Sig. 
Non-seasonal Lags MA1 -.27 .12 -2.25 .03
Seasonal Lags Seasonal AR1 -.50 .11 -4.53 .00
Regression Coefficients ITWS1 -1.40 .79 -1.78 .08

ITWS9 1.00 .98 1.03 .31
ITWS10 -1.21 1.40 -.87 .39

Melard's algorithm was used for estimation. 

Table A3. ARIMA Parameter Estimates: Baltimore-Washington International (BWI)

Daily (N = 2373) 
 ARIMA (2,0,1) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 1.15 .03 38.61 .00

AR2 -.18 .02 -7.56 .00
MA1 .94 .02 45.48 .00

Regression Coefficients ITWS1 -1.11 1.01 -1.10 .27
ITWS9 1.96 1.18 1.66 .10
ITWS10 -1.82 1.38 -1.32 .19

Constant 95.67 .32 301.11 .00
Monthly (N = 78) 

ARIMA (0,0,0)(1,1,0)12 Estimates S.E. t Approx. Sig. 
Seasonal Lags Seasonal AR1 -.57 .10 -5.70 .00
Regression Coefficients ITWS1 .07 .62 .12 .91

ITWS9 .77 .77 1.00 .32
ITWS10 -1.00 .98 -1.01 .32

Melard's algorithm was used for estimation. 



A-3

ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

Table A4. ARIMA Parameter Estimates: Douglas International (CLT)

Daily (N = 2373) 
 ARIMA (1,0,3) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .98 .01 78.46 .00

MA1 .82 .02 33.83 .00
MA2 .10 .03 3.73 .00
MA3 .04 .02 1.87 .06

Regression Coefficients ITWS1 -.56 .59 -.95 .34
ITWS9 1.42 .71 2.01 .04
ITWS10 -1.17 .86 -1.35 .18

Constant 96.25 .21 459.06 .00
Monthly (N = 78) 

ARIMA (0,1,1)(1,1,0)12 Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags MA1 .88 .07 12.21 .00
Seasonal Lags Seasonal AR1 -.61 .09 -6.48 .00
Regression Coefficients ITWS1 -.32 .55 -.59 .56

ITWS9 .25 .58 .43 .67
ITWS10 -.42 .72 -.58 .56

Melard's algorithm was used for estimation. 

Table A5. ARIMA Parameter Estimates: Ronald Reagan Washington National (DCA)

Daily (N = 2373) 
 ARIMA (3,0 0) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .18 .02 8.89 .00

AR2 .06 .02 2.86 .00
AR3 .08 .02 3.76 .00

Regression Coefficients ITWS1 -1.11 .58 -1.90 .06
ITWS9 1.93 .70 2.75 .01
ITWS10 -1.50 .88 -1.70 .09

Constant 96.16 .16 616.69 .00
Monthly (N = 78) 

ARIMA(0,1,1)(1,1,0)12 Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags MA1 .74 .09 8.34 .00
Seasonal Lags Seasonal AR1 -.48 .12 -4.15 .00
Regression Coefficients ITWS1 -.34 .71 -.48 .63

ITWS9 1.13 .75 1.51 .14
ITWS10 -.69 .85 -.81 .42

Melard's algorithm was used for estimation. 
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ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

Table A6. ARIMA Parameter Estimates: Denver International (DEN)

Daily (N = 2373) 
 ARIMA (0,1,2) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags MA1 .77 .02 38.32 .00

MA2 .22 .02 11.23 .00
Regression Coefficients ITWS1 .52 .82 .63 .53

ITWS10 .20 1.02 .19 .85
Monthly (N = 78) 

ARIMA (0,1,1) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags MA1 .84 .07 12.60 .00
Regression Coefficients ITWS1 .77 .84 .92 .36

ITWS10 .20 1.03 .19 .85
Melard's algorithm was used for estimation. 

Table A7. ARIMA Parameter Estimates: Hollywood International Ft. Lauderdale (FLL)

Daily (N = 2373) 
 ARIMA (2,0,1) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 1.20 .03 41.01 .00

AR2 -.22 .02 -9.39 .00
MA1 .94 .02 47.88 .00

Regression Coefficients ITWS1 .54 .99 .54 .59
ITWS2 .13 1.07 .12 .91
ITWS3 .00 1.31 .00 1.00
ITWS4 -.05 1.33 -.04 .97
ITWS5 -.89 1.07 -.83 .41
ITWS6 .65 1.07 .61 .54
ITWS7 .41 .98 .42 .68
ITWS8 -.63 .91 -.69 .49
ITWS9 .57 .72 .79 .43
ITWS10 -.37 .89 -.42 .68

Constant 96.56 .24 399.75 .00
Monthly (N = 78) 

ARIMA (0,0,0)(1,1,0)12 Estimates S.E. t Approx. Sig. 
Seasonal Lags Seasonal AR1 -.64 .10 -6.25 .00
Regression Coefficients ITWS1 .84 .72 1.17 .25

ITWS2 .17 .81 .21 .84
ITWS3 -.73 .86 -.85 .40
ITWS4 1.44 .86 1.68 .10
ITWS5 -2.39 .98 -2.43 .02
ITWS6 -.21 .95 -.22 .83
ITWS7 1.14 .75 1.53 .13
ITWS8 .45 .67 .67 .50
ITWS9 -.55 .44 -1.25 .22
ITWS10 .78 .69 1.14 .26

Melard's algorithm was used for estimation. 
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ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

Table A8. ARIMA Parameter Estimates: Washington Dulles International (IAD)

Daily (N = 2373) 
 ARIMA (2,0,1) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 1.23 .02 44.15 .00

AR2 -.25 .02 -10.69 .00
MA1 .95 1.04 53.42 .00

Regression Coefficients ITWS1 -1.43 1.21 -1.37 .17
ITWS9 2.08 1.39 1.73 .08
ITWS10 -2.06 .35 -1.48 .14

Constant 95.63 .02 275.33 .00
Monthly (N = 78) 

ARIMA (0,0,1)(1,0,0)12 Estimates S.E. t Approx. Sig. 
Non-seasonal Lags MA1 -.38 .11 -3.50 .00
Seasonal Lags Seasonal AR1 .47 .11 4.24 .00
Regression Coefficients ITWS1 -.39 .82 -.48 .63

ITWS9 1.48 .96 1.54 .13
ITWS10 -2.52 1.20 -2.10 .04

Constant 95.50 .41 235.55 .00
Melard's algorithm was used for estimation. 

Table A9. ARIMA Parameter Estimates: Miami International (MIA)

Daily (N = 2373) 
ARIMA (1,0,2) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .95 .01 63.94 .00

MA1 .75 .03 29.16 .00
MA2 .11 .02 4.84 .00

Regression Coefficients ITWS1 .84 1.27 .66 .51
ITWS2 -.06 1.39 -.04 .97
ITWS3 -.45 1.61 -.28 .78
ITWS4 .91 1.64 .56 .58
ITWS5 -1.69 1.38 -1.22 .22
ITWS6 1.29 1.39 .93 .35
ITWS7 .89 1.28 .70 .48
ITWS8 -1.86 1.17 -1.59 .11
ITWS9 1.94 .90 2.17 .03
ITWS10 -.82 1.15 -.71 .47

Constant 95.84 .28 336.72 .00
Monthly (N = 78) 

ARIMA (1,0,0) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .31 .12 2.57 .01
Regression Coefficients ITWS1 1.33 1.51 .88 .38

ITWS2 .22 1.67 .13 .90
ITWS3 -1.48 1.71 -.87 .39
ITWS4 1.44 1.86 .77 .44
ITWS5 -.77 1.76 -.43 .67
ITWS6 -1.06 1.53 -.70 .49
ITWS7 1.85 1.51 1.22 .22
ITWS8 -1.27 1.38 -.92 .36
ITWS9 1.35 1.02 1.32 .19
ITWS10 -.42 1.25 -.34 .74

 Constant 95.85 .32 300.94 .00
Melard's algorithm was used for estimation. 
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ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

Table A10. ARIMA Parameter Estimates: Minneapolis - St. Paul International (MSP)

Daily (N = 2373) 
 ARIMA (0,0,3) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags MA1 -.17 .02 -8.22 .00

MA2 -.05 .02 -2.30 .02
MA3 -.07 .02 -3.50 .00

Regression Coefficients ITWS1 .22 1.80 .12 .90
ITWS8 .50 1.83 .27 .78
ITWS9 -.81 .50 -1.61 .11
ITWS10 1.26 .70 1.79 .07

Constant 96.06 .13 766.62 .00
Monthly (N = 78) 

ARIMA (0,0,0) Estimates S.E. t Approx. Sig. 
Regression Coefficients ITWS1 .61 .45 1.35 .18

ITWS9 -.74 .58 -1.27 .21
ITWS10 1.22 .76 1.60 .11

 Constant 96.07 .15 660.95 .00
Melard's algorithm was used for estimation. 

Table A11. ARIMA Parameter Estimates: Chicago O’Hare (ORD)

Daily (N = 2373) 
 ARIMA (1,0,2) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .92 .03 29.47 .00

MA1 .67 .04 17.46 .00
MA2 .16 .02 6.61 .00

Regression Coefficients ITWS1 .29 .96 .30 .77
ITWS2 .32 1.20 .27 .79
ITWS3 .70 1.79 .39 .69
ITWS4 -4.07 1.86 -2.19 .03
ITWS5 1.45 1.48 .98 .33
ITWS6 2.90 1.43 2.03 .04
ITWS7 -.57 1.26 -.46 .65
ITWS8 -.41 1.13 -.37 .71
ITWS9 .26 .80 .33 .74
ITWS10 -.68 1.08 -.63 .53

Constant 94.77 .24 397.32 .00
Monthly (N = 78) 

ARIMA (0,0,0)(1,0,0)12 Estimates S.E. t Approx. Sig. 
Seasonal Lags Seasonal AR1 .43 .11 3.81 .00
Regression Coefficients ITWS1 .96 .83 1.15 .25

ITWS2 -1.22 1.13 -1.08 .28
ITWS3 .95 1.53 .62 .54
ITWS4 -3.15 1.62 -1.95 .06
ITWS5 2.93 1.62 1.81 .07
ITWS6 .73 1.55 .47 .64
ITWS7 .02 1.22 .02 .99
ITWS8 -.49 1.14 -.43 .67
ITWS9 .38 .72 .53 .60
ITWS10 -1.38 1.00 -1.38 .17

 Constant 94.64 .32 299.89 .00
Melard's algorithm was used for estimation. 
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ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

Table A12. ARIMA Parameter Estimates: Palm Beach International (PBI)

Daily (N = 2373) 
 ARIMA (1,0,2) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .93 .04 25.22 .00

MA1 .73 .04 16.95 .00
MA2 .14 .02 5.68 .00

Regression Coefficients ITWS1 -2.02 .72 -2.82 .00
ITWS2 -.22 .80 -.28 .78
ITWS3 -.87 1.00 -.87 .39
ITWS4 1.67 1.04 1.61 .11
ITWS5 -.94 .82 -1.15 .25
ITWS6 .79 .78 1.02 .31
ITWS7 -.61 .68 -.90 .37
ITWS8 -.55 .61 -.91 .36
ITWS9 1.71 .43 4.01 .00
ITWS10 -.63 .58 -1.09 .27

Constant 97.08 .12 778.34 .00
Monthly (N = 78) 

ARIMA (0,1,1)(1,1,0)12 Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags MA1 .82 .10 7.88 .00
Seasonal Lags Seasonal AR1 -.77 .07 -10.38 .00
Regression Coefficients ITWS1 -1.66 .61 -2.74 .01

ITWS2 -.06 .64 -.09 .93
ITWS3 -1.10 .71 -1.54 .13
ITWS4 1.52 .67 2.26 .03
ITWS5 -1.31 .83 -1.58 .12
ITWS6 .62 .80 .77 .44
ITWS7 .54 .64 .85 .40
ITWS8 -1.00 .59 -1.69 .10
ITWS9 1.93 .48 4.03 .00
ITWS10 -.41 .67 -.62 .54

Melard's algorithm was used for estimation. 
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ARIMA notation: (p,d,q)(P,D,Q)S Where: p = auto-regressive, d = integrated (trend), q = moving average, 
P = seasonal autoregressive, D = seasonal trend, Q = seasonal moving average, S = seasonal cycle 

Table A13. ARIMA Parameter Estimates: Lambert St. Louis International (STL)

Daily (N = 2373) 
 ARIMA (2,0,0) Estimates S.E. t Approx. Sig. 
Non-Seasonal Lags AR1 .18 .02 8.53 .00

AR2 .07 .02 3.39 .00
Regression Coefficients ITWS1 .87 .77 1.12 .26

ITWS2 -.39 .85 -.46 .65
ITWS3 .12 1.06 .11 .91
ITWS4 -1.54 1.11 -1.38 .17
ITWS5 .88 .82 1.07 .28
ITWS6 .49 .76 .65 .52
ITWS7 .36 .63 .58 .56
ITWS8 -.51 .56 -.91 .36
ITWS9 .31 .37 .83 .41
ITWS10 -.13 .52 -.26 .80

Constant 97.19 .10 926.57 .00
Monthly

ARIMA (0,0,0)(2,3,0)12 Estimates S.E. t Approx. Sig. 
Seasonal Lags Seasonal AR1 -1.40 .15 -9.60 .00

Seasonal AR2 -.66 .18 -3.77 .00
Regression Coefficients ITWS1 -.92 .97 -.95 .35

ITWS2 .63 1.03 .61 .54
ITWS3 .43 1.01 .43 .67
ITWS4 -1.37 1.04 -1.31 .20
ITWS5 .48 1.09 .44 .66
ITWS6 .11 1.14 .09 .93
ITWS7 .21 .82 .26 .80
ITWS8 -.69 .80 -.86 .40
ITWS9 .23 .94 .24 .81
ITWS10 -1.82 1.32 -1.38 .18

Melard’s algorithm was used for estimation. 
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APPENDIX B 

Autocorrelation Functions (ACF) and Box-Ljung Statistics by Airport 

Table B1. ACFs and Box-Ljung: Hartsfield - Jackson Atlanta International (ATL)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig.
1 .00 .02 .03 1 .87 1 .00 .12 .00 1 .99
2 .01 .02 .11 2 .95 2 .05 .12 .15 2 .93
3 -.01 .02 .27 3 .96 3 .01 .12 .16 3 .98
4 .01 .02 .49 4 .97 4 -.09 .12 .79 4 .94
5 -.02 .02 1.38 5 .93 5 -.13 .12 1.95 5 .86
6 .00 .02 1.38 6 .97 6 -.09 .12 2.58 6 .86
7 .01 .02 1.78 7 .97 7 -.09 .11 3.20 7 .87
8 .02 .02 2.53 8 .96 8 -.07 .11 3.61 8 .89
9 -.01 .02 2.73 9 .97 9 .13 .11 4.84 9 .85

10 -.03 .02 4.50 10 .92 10 -.06 .11 5.10 10 .88
11 .03 .02 6.41 11 .84 11 .18 .11 7.87 11 .73
12 -.03 .02 8.46 12 .75 12 .01 .11 7.88 12 .79
13 .01 .02 8.58 13 .80 13 .07 .11 8.24 13 .83
14 -.01 .02 9.03 14 .83 14 .02 .11 8.27 14 .87
15 .02 .02 10.36 15 .80 15 -.07 .11 8.66 15 .89
16 -.01 .02 10.46 16 .84 16 .03 .11 8.73 16 .92

Table B2. ACFs and Box-Ljung: Logan International (BOS)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .00 1 .97 1 .01 .12 .01 1 .93
2 .00 .02 .01 2 .99 2 .10 .12 .75 2 .69
3 .00 .02 .02 3 1.00 3 .24 .12 4.92 3 .18
4 -.02 .02 .75 4 .94 4 -.10 .12 5.62 4 .23
5 .01 .02 .94 5 .97 5 .18 .12 7.95 5 .16
6 -.02 .02 1.51 6 .96 6 -.10 .12 8.64 6 .20
7 .02 .02 2.50 7 .93 7 -.08 .11 9.17 7 .24
8 .01 .02 2.76 8 .95 8 .11 .11 10.05 8 .26
9 .02 .02 4.24 9 .89 9 -.14 .11 11.69 9 .23

10 .02 .02 4.79 10 .91 10 .05 .11 11.88 10 .29
11 -.01 .02 5.09 11 .93 11 -.03 .11 11.96 11 .37
12 -.03 .02 7.69 12 .81 12 -.15 .11 13.85 12 .31
13 -.03 .02 9.36 13 .74 13 .08 .11 14.46 13 .34
14 -.02 .02 9.99 14 .76 14 -.14 .11 16.05 14 .31
15 -.02 .02 10.65 15 .78 15 .10 .11 16.90 15 .33
16 .00 .02 10.68 16 .83 16 -.05 .11 17.11 16 .38
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Table B3. ACFs and Box-Ljung: Baltimore-Washington International (BWI)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .00 1 .98 1 .05 .12 .19 1 .66
2 .00 .02 .04 2 .98 2 .00 .12 .19 2 .91
3 .00 .02 .08 3 .99 3 -.10 .12 .94 3 .82
4 .00 .02 .09 4 1.00 4 -.09 .12 1.52 4 .82
5 .03 .02 1.85 5 .87 5 .01 .12 1.53 5 .91
6 -.04 .02 4.81 6 .57 6 -.03 .12 1.60 6 .95
7 -.02 .02 5.40 7 .61 7 -.03 .11 1.67 7 .98
8 .00 .02 5.40 8 .71 8 .26 .11 6.77 8 .56
9 .00 .02 5.44 9 .79 9 .19 .11 9.57 9 .39

10 .00 .02 5.46 10 .86 10 .00 .11 9.57 10 .48
11 .00 .02 5.52 11 .90 11 -.13 .11 11.04 11 .44
12 .00 .02 5.53 12 .94 12 -.11 .11 11.99 12 .45
13 -.01 .02 5.78 13 .95 13 -.09 .11 12.71 13 .47
14 .00 .02 5.83 14 .97 14 -.05 .11 12.96 14 .53
15 -.02 .02 6.37 15 .97 15 .08 .11 13.55 15 .56
16 -.02 .02 7.32 16 .97 16 -.06 .11 13.88 16 .61

Table B4. ACFs and Box-Ljung: Douglas International (CLT)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .05 1 .92 1 .15 .12 1.42 1 .23
2 -.03 .02 2.20 2 .97 2 .02 .12 1.46 2 .48
3 .01 .02 2.54 3 .53 3 .10 .12 2.12 3 .55
4 .01 .02 2.86 4 .64 4 -.03 .12 2.20 4 .70
5 .04 .02 7.05 5 .72 5 .04 .12 2.28 5 .81
6 .01 .02 7.17 6 .32 6 -.19 .12 4.99 6 .55
7 -.01 .02 7.29 7 .41 7 -.09 .12 5.53 7 .60
8 .00 .02 7.31 8 .51 8 -.18 .11 7.98 8 .44
9 -.03 .02 8.93 9 .61 9 -.06 .11 8.30 9 .50

10 .00 .02 8.93 10 .54 10 -.15 .11 10.11 10 .43
11 .01 .02 9.29 11 .63 11 -.05 .11 10.28 11 .51
12 -.02 .02 10.50 12 .68 12 .11 .11 11.29 12 .51
13 -.02 .02 11.87 13 .65 13 -.14 .11 12.95 13 .45
14 -.02 .02 13.32 14 .62 14 .09 .11 13.62 14 .48
15 -.02 .02 14.09 15 .58 15 .11 .11 14.61 15 .48
16 .00 .02 .05 16 .59 16 -.01 .11 14.62 16 .55
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Table B5. ACFs and Box-Ljung: Ronald Reagan Washington National (DCA)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .00 1 .99 1 .00 .12 .00 1 .99
2 .00 .02 .02 2 .99 2 .01 .12 .01 2 1.00
3 .00 .02 .07 3 1.00 3 .07 .12 .36 3 .95
4 -.01 .02 .24 4 .99 4 -.13 .12 1.66 4 .80
5 .02 .02 1.35 5 .93 5 -.15 .12 3.19 5 .67
6 .02 .02 1.92 6 .93 6 .10 .12 3.86 6 .70
7 .03 .02 4.23 7 .75 7 -.03 .12 3.93 7 .79
8 .04 .02 8.29 8 .41 8 .10 .11 4.69 8 .79
9 .01 .02 8.40 9 .49 9 .27 .11 10.54 9 .31

10 .04 .02 12.76 10 .24 10 -.10 .11 11.35 10 .33
11 .02 .02 13.66 11 .25 11 -.06 .11 11.68 11 .39
12 .01 .02 14.05 12 .30 12 -.04 .11 11.79 12 .46
13 .04 .02 18.38 13 .14 13 -.33 .11 20.83 13 .08
14 .03 .02 20.62 14 .11 14 -.03 .11 20.93 14 .10
15 .03 .02 22.17 15 .10 15 .07 .11 21.36 15 .13
16 .01 .02 22.30 16 .13 16 -.12 .11 22.57 16 .13

Table B6. ACFs and Box-Ljung: Denver International (DEN)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .02 1 .88 1 .00 .11 .00 1 .98
2 .01 .02 .37 2 .83 2 .05 .11 .17 2 .92
3 -.02 .02 1.10 3 .78 3 -.06 .11 .51 3 .92
4 -.02 .02 2.23 4 .69 4 -.07 .11 .92 4 .92
5 .01 .02 2.30 5 .81 5 .04 .11 1.06 5 .96
6 .04 .02 5.74 6 .45 6 .14 .11 2.65 6 .85
7 .03 .02 7.65 7 .36 7 -.01 .11 2.65 7 .92
8 .00 .02 7.68 8 .47 8 .02 .11 2.68 8 .95
9 -.03 .02 10.01 9 .35 9 -.05 .11 2.88 9 .97

10 .03 .02 12.76 10 .24 10 -.14 .10 4.67 10 .91
11 .04 .02 17.31 11 .10 11 .25 .10 10.47 11 .49
12 .01 .02 17.48 12 .13 12 .11 .10 11.51 12 .49
13 .02 .02 18.26 13 .15 13 .05 .10 11.78 13 .55
14 -.01 .02 18.66 14 .18 14 .03 .10 11.88 14 .62
15 -.02 .02 19.80 15 .18 15 -.07 .10 12.32 15 .65
16 .01 .02 19.99 16 .22 16 -.07 .10 12.87 16 .68



B-4

Table B7. ACFs and Box-Ljung: Hollywood International Ft. Lauderdale (FLL)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .01 1 .93 1 -.05 .12 .19 1 .66
2 -.01 .02 .08 2 .96 2 .04 .12 .32 2 .85
3 -.01 .02 .18 3 .98 3 .05 .12 .47 3 .92
4 -.01 .02 .32 4 .99 4 .03 .12 .53 4 .97
5 -.01 .02 .77 5 .98 5 .03 .12 .59 5 .99
6 -.01 .02 .85 6 .99 6 .05 .12 .79 6 .99
7 .02 .02 1.89 7 .97 7 -.11 .11 1.76 7 .97
8 .00 .02 1.94 8 .98 8 -.03 .11 1.81 8 .99
9 -.03 .02 3.63 9 .93 9 .06 .11 2.05 9 .99

10 .00 .02 3.64 10 .96 10 .01 .11 2.06 10 1.00
11 .04 .02 7.89 11 .72 11 .00 .11 2.06 11 1.00
12 .02 .02 9.07 12 .70 12 .01 .11 2.07 12 1.00
13 -.01 .02 9.56 13 .73 13 -.02 .11 2.09 13 1.00
14 -.02 .02 10.40 14 .73 14 -.01 .11 2.10 14 1.00
15 .01 .02 10.56 15 .78 15 -.05 .11 2.29 15 1.00
16 .00 .02 10.56 16 .84 16 -.17 .11 4.90 16 1.00

Table B8. ACFs and Box-Ljung: Washington Dulles International (IAD)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .03 1 .85 1 .06 .11 .25 1 .62
2 .02 .02 .95 2 .62 2 .13 .11 1.65 2 .44
3 -.01 .02 1.27 3 .74 3 -.15 .11 3.44 3 .33
4 -.02 .02 2.11 4 .72 4 -.09 .11 4.20 4 .38
5 .00 .02 2.17 5 .83 5 -.05 .11 4.45 5 .49
6 -.01 .02 2.64 6 .85 6 .11 .11 5.41 6 .49
7 .04 .02 5.97 7 .54 7 -.08 .11 5.91 7 .55
8 -.02 .02 6.87 8 .55 8 .07 .11 6.32 8 .61
9 .02 .02 7.55 9 .58 9 .11 .11 7.33 9 .60

10 .01 .02 7.78 10 .65 10 -.01 .10 7.34 10 .69
11 -.01 .02 7.94 11 .72 11 .08 .10 7.95 11 .72
12 .00 .02 7.94 12 .79 12 -.04 .10 8.14 12 .77
13 -.01 .02 8.23 13 .83 13 .09 .10 8.94 13 .78
14 .01 .02 8.32 14 .87 14 -.02 .10 8.99 14 .83
15 -.05 .02 13.91 15 .53 15 .08 .10 9.70 15 .84
16 .00 .02 13.92 16 .60 16 -.10 .10 10.71 16 .83
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Table B9. ACFs and Box-Ljung: Miami International (MIA)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .01 .02 .07 1 .79 1 -.03 .11 .05 1 .82
2 .04 .02 4.32 2 .12 2 .10 .11 .88 2 .64
3 -.01 .02 4.64 3 .20 3 .01 .11 .88 3 .83
4 .01 .02 4.72 4 .32 4 -.07 .11 1.28 4 .86
5 -.04 .02 8.85 5 .12 5 -.15 .11 3.28 5 .66
6 .00 .02 8.87 6 .18 6 .01 .11 3.29 6 .77
7 -.02 .02 9.73 7 .20 7 -.10 .11 4.09 7 .77
8 .03 .02 12.34 8 .14 8 -.06 .11 4.42 8 .82
9 -.02 .02 13.66 9 .13 9 .16 .11 6.84 9 .65

10 -.01 .02 14.05 10 .17 10 -.19 .10 10.25 10 .42
11 .01 .02 14.12 11 .23 11 .12 .10 11.65 11 .39
12 -.03 .02 16.30 12 .18 12 .11 .10 12.88 12 .38
13 -.01 .02 16.63 13 .22 13 .17 .10 15.75 13 .26
14 .01 .02 16.70 14 .27 14 -.14 .10 17.54 14 .23
15 .00 .02 16.72 15 .34 15 .03 .10 17.61 15 .28
16 -.01 .02 17.04 16 .38 16 -.18 .10 21.00 16 .18

Table B10. ACFs and Box-Ljung: Minneapolis - St. Paul International (MSP)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .00 1 .96 1 .18 .11 2.52 1 .11
2 .00 .02 .02 2 .99 2 -.02 .11 2.57 2 .28
3 .00 .02 .03 3 1.00 3 -.02 .11 2.61 3 .46
4 .00 .02 .06 4 1.00 4 -.15 .11 4.47 4 .35
5 .05 .02 6.93 5 .23 5 .14 .11 6.09 5 .30
6 .02 .02 8.15 6 .23 6 .20 .11 9.60 6 .14
7 .01 .02 8.38 7 .30 7 -.01 .11 9.61 7 .21
8 .01 .02 8.89 8 .35 8 -.08 .11 10.14 8 .26
9 .03 .02 11.33 9 .25 9 .04 .11 10.30 9 .33

10 -.01 .02 11.40 10 .33 10 .05 .10 10.53 10 .40
11 .00 .02 11.40 11 .41 11 .16 .10 12.93 11 .30
12 .04 .02 14.43 12 .27 12 .06 .10 13.27 12 .35
13 .01 .02 14.60 13 .33 13 .07 .10 13.73 13 .39
14 .01 .02 14.77 14 .39 14 -.12 .10 15.16 14 .37
15 .00 .02 14.80 15 .47 15 -.22 .10 19.84 15 .18
16 -.01 .02 15.13 16 .52 16 -.07 .10 20.39 16 .20
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Table B11. ACFs and Box-Ljung: Chicago O’Hare (ORD)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .02 1 .90 1 .04 .11 .12 1 .73
2 .01 .02 .54 2 .76 2 .03 .11 .19 2 .91
3 .01 .02 .82 3 .85 3 .07 .11 .58 3 .90
4 .00 .02 .82 4 .94 4 -.05 .11 .76 4 .94
5 -.05 .02 5.87 5 .32 5 -.03 .11 .86 5 .97
6 .00 .02 5.90 6 .43 6 .07 .11 1.25 6 .97
7 .02 .02 7.25 7 .40 7 -.04 .11 1.36 7 .99
8 -.04 .02 11.04 8 .20 8 .20 .11 5.02 8 .76
9 .01 .02 11.55 9 .24 9 -.17 .11 7.55 9 .58

10 .03 .02 13.68 10 .19 10 .14 .10 9.40 10 .49
11 .00 .02 13.69 11 .25 11 .06 .10 9.77 11 .55
12 .00 .02 13.69 12 .32 12 -.10 .10 10.67 12 .56
13 -.02 .02 14.54 13 .34 13 .16 .10 12.98 13 .45
14 -.02 .02 15.33 14 .36 14 .08 .10 13.55 14 .48
15 .01 .02 15.56 15 .41 15 -.12 .10 15.06 15 .45
16 .00 .02 15.57 16 .48 16 -.10 .10 16.15 16 .44

Table B12. ACFs and Box-Ljung: Palm Beach International (PBI)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .02 1 .89 1 .02 .12 .03 1 .86
2 .01 .02 .42 2 .81 2 -.12 .12 1.03 2 .60
3 -.04 .02 3.78 3 .29 3 .08 .12 1.49 3 .68
4 -.01 .02 4.22 4 .38 4 -.12 .12 2.50 4 .64
5 .03 .02 6.53 5 .26 5 -.01 .12 2.52 5 .77
6 -.03 .02 8.49 6 .20 6 .14 .12 3.99 6 .68
7 -.01 .02 8.71 7 .27 7 .10 .12 4.72 7 .69
8 .01 .02 8.92 8 .35 8 -.12 .11 5.87 8 .66
9 .04 .02 12.81 9 .17 9 .03 .11 5.95 9 .74

10 .05 .02 18.38 10 .05 10 .02 .11 5.99 10 .82
11 .04 .02 21.96 11 .02 11 -.02 .11 6.02 11 .87
12 -.02 .02 22.51 12 .03 12 .06 .11 6.31 12 .90
13 -.01 .02 22.58 13 .05 13 .10 .11 7.18 13 .89
14 .00 .02 22.60 14 .07 14 .03 .11 7.27 14 .92
15 -.07 .02 32.90 15 .00 15 -.01 .11 7.27 15 .95
16 .02 .02 33.62 16 .01 16 .01 .11 7.28 16 .97
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Table B13. ACFs and Box-Ljung: Lambert St. Louis International (STL)
Daily (N = 2373) Monthly (N = 78) 

Box-Ljung Box-Ljung Lag Auto. S.E. Value df Sig. Lag Auto. S.E. Value df Sig. 
1 .00 .02 .00 1 .98 1 -.11 .15 .54 1 .46
2 .00 .02 .01 2 1.00 2 -.13 .15 1.28 2 .53
3 -.02 .02 .71 3 .87 3 -.06 .15 1.44 3 .70
4 .03 .02 3.46 4 .48 x -.32 .14 6.34 4 .17
5 .05 .02 10.35 5 .07 5 -.06 .14 6.54 5 .26
6 -.02 .02 11.05 6 .09 6 .24 .14 9.57 6 .14
7 .01 .02 11.21 7 .13 7 .05 .14 9.68 7 .21
8 -.01 .02 11.34 8 .18 8 .03 .14 9.74 8 .28
9 .01 .02 11.49 9 .24 9 -.04 .13 9.84 9 .36

10 -.01 .02 11.79 10 .30 10 -.34 .13 16.63 10 .08
11 -.01 .02 11.92 11 .37 11 .16 .13 18.24 11 .08
12 .04 .02 15.03 12 .24 12 .06 .13 18.44 12 .10
13 .04 .02 18.15 13 .15 13 .10 .13 19.05 13 .12
14 -.02 .02 19.57 14 .14 14 .10 .12 19.69 14 .14
15 -.01 .02 19.75 15 .18 15 -.03 .12 19.77 15 .18
16 -.01 .02 19.93 16 .22 16 -.27 .12 24.78 16 .07




