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EXECUTIVE SUMMARY

Graphical weather displays such as Next-Generation Radar 
(NEXRAD) radar reflectivity maps are now extensively being used 
by general aviation (GA) pilots. Human factors issues associated 
with such risk-proxy displays are of great interest to researchers, 
aviation policymakers, manufacturers, and aircraft insurers alike.

To that end, this study is a simple, three-page test of risk toler-
ance. With risk defined as the chance of “significant damage to 
your aircraft,” and motivation as “fuel cost combined with time 
pressure,” three graphical NEXRAD-like risk gradients were 
created, each with a different starting value, and logarithmically 
color-coded with eight different levels of risk posed by potential 
weather. Each risk gradient was given two different motivation 
levels. The study utilized 30 GA pilots to draw six flight paths 
from a departure point to a destination point and estimated 
each pilot’s risk tolerance for each flight, based on flight path 
length (an efficiency measure) and the highest-risk area traversed 
(a safety measure).

Three major quantitative findings emerged. First, higher 
motivation generally led to shorter flight paths, but at the cost 
of higher risk. Second, in more than half the flights tested here, 
pilots appeared to exhibit risk tolerances in excess of formal 
national policy goals. Third, however, the numerical risk values 
themselves appeared confusing to many pilots.

All three of these findings could be effectively and easily ad-
dressed by training.

This study explores plausible theoretical explanations for 
these findings, including pilots’ use of risk heuristics—sim-
plifying mental rules, which substitute for complex mental 
calculations. Some of these heuristics could benefit from 
training. The remainder need only be “tuned” to meet policy 
goals. Finally, the study recommends that the color schemes 
in flightdeck displays be kept simple and consistent with color 
schemes pilots already know.
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Pilots’ Risk Perception and Risk Tolerance  
Using Graphical Risk-Proxy Gradients

 
Figure 1. Map of tornado risk (NWS, 2013). 

INTRODUCTION

Motivation for the Current Study
Inclement weather is hazardous for general aviation (GA) 

flight. Estimates vary, but weather is judged to be at least a 
secondary factor in about 20% of GA accidents (FAA/ASIAS, 
2010). Historically, a disproportionately high number (≈50-78%) 
of weather-related GA accidents prove fatal (Batt & O’Hare, 
2005; NTSB, 2005). Lately, that figure seems slightly lower; 
the 2011 Nall Report cites adverse weather as being the primary 
cause of 43 of 1,160 (3.7%) non-commercial, fixed-wing GA 
accidents in 2010 (AOPA, 2011). The GA fatal accident rate 
has flattened over the past six years, with 259 fatal accidents 
in 2013, at a cost of 449 lives. Nonetheless, improving general 
aviation safety remains a top priority for the FAA and industry, 
and they are working together to raise awareness to prevent 
weather related accidents.1 

Cockpit Weather Information (CWI)
CWI is widely seen as a leading contender for mitigating 

weather-related risk. This makes CWI a priority research topic 
with stakeholders, including FAA, National Weather Service, 
NASA, industry, and the Department of Defense. As such, the 
FAA Next Generation Air Transportation System (NextGen) 
Implementation Plan specifically discusses “up-to-date weather 
and airspace status information delivered directly to the cock-
pit” as part of its vision for modernizing the National Airspace 
System (FAA, 2012, p. 8). 

Research for this effort is being performed by groups such 
as the FAA’s Weather Technology in the Cockpit (WTIC Pro-
gram), the National Center for Atmospheric Research (NCAR, 
Steiner et al., 2010), NASA, and MIT’s Lincoln Laboratory. 
The WTIC Program, for instance, recently completed a human 
factors study of probabilistic CWI and its effect on navigation 
through convective weather (ATSC, 2013).

The current study was inspired by that WTIC Program study. 
However, this study is not a study of “probabilistic weather” in 
the sense defined in aforementioned study (“the probability of a 
given type of weather being in a given location at a given time”). 
Instead, this study explores how GA pilots perceive and use risk 
gradients—the direct graphical display of risk at a given location 
at a given time, with weather information being represented as 
risk gradients on a graphical display.

The underlying motivation is, of course, that risk percep-
tion is likely something derived from both static and dynamic 
information in the graphical display itself. This could involve 
direct perception, in the Gibsonian sense of not requiring higher 
cognitive processing (Gibson, 1979). Or, it could involve 
constructivism, in the sense of assembling more-complex schemata 

1http://www.faa.gov/news/press_releases/news_story.cfm?newsId=15634

from elementary percepts (von Glasersfeld, 1995). Regardless, the 
phenomenon of risk perception has to be based on information 
present in the display, and it is important to know what that 
specific information is.

Risk and Risk Gradients
Risk is defined as the chance of a given loss or injury (Merriam-

Webster, 2013). Risk gradients are graphical representations of 
risk. For instance, Figure 1 shows a color-coded National Weather 
Service (NWS) map of tornado risk, the chance of experiencing 
a tornado in various parts of the United States.

Risk gradients can be static (motionless, e.g., Figure 1) or 
dynamic (moving over time). Since risk itself is rather difficult 
to represent directly, it is typically represented indirectly by proxy, 
where some stimulus attribute such as color stands in for the 
more abstract quality of risk.

Figure 2 shows three frames of a composite NEXRAD ra-
dar reflectivity movie showing movement of a weather system 
across the Midwest. Each frame shows a time snapshot of radar 
reflectivity levels. Pilots interpret these radar reflectivity levels as 
a proxy for risk. Red is taken to be potentially more dangerous 
than yellow, which is taken as potentially more dangerous than 
green, and so forth. 

Risk proxies are typically not perfect representations of risk. 
Instead, they are correlates. They correlate with risk, meaning they 
bear a statistical relation to risk, can serve as representations of 
risk, and can function as predictors of risk to some degree. Risk 
proxies are extremely important, since the accurate numerical 
calculation of risk can be extremely complex, and governmental 
entities such as the National Weather Service (NWS) are simply 
not in a position to calculate actual numerical risk estimates for 
every type of aircraft in every type of weather situation—let alone 
to take legal responsibility for such predictions. So, instead, they 
supply weather information—risk proxies—and let individual 
pilots estimate their own individual risk from that information.



2

 
Figure 2. Three Looping NEXRAD Movie Frames 

Risk Perception and Tolerance
Despite the common notion that “brains are computers,” 

people rarely calculate risk the way a computer program might. 
Instead, one usually relies on risk-proxies and heuristics. Heuristics 
are simple rules, often used unconsciously. Heuristics come in 
different kinds, two of which are particularly relevant to this paper.

Perceptual heuristics 
Many object qualities are not tangible things that can be 

perceived directly in the same sense as color and taste are per-
ceived directly.2 Instead, object qualities are often things one 
infers from physical stimuli that usefully correlate with a given 
quality. For instance, one often unconsciously uses visual clar-
ity to judge how close an object is, because closer objects tend 
to look clearer, while distant objects look blurrier (Kahneman, 
Slovic, & Tversky, 1982, p. 3).

Certain kinds of risk can be accurately estimated with percep-
tual heuristics. A crawling infant suddenly stops at the edge of a 
staircase, transfixed by the famous “visual cliff,” the visual stimulus 
of a sudden drop-off (Gibson & Walk, 1960). The drop-off is a 
cue to, or correlate of, an impending high-impact, potentially 
dangerous event. This cue is so important to survival that nature 
has hardwired in a heuristic to handle it (ibid., 1960). Similarly, 
birds such as gannets, which hunt by diving at fish close to the 
surface of water, seem to know exactly when to pull out of their 
dive by perceiving a visual cue of time to contact mathematically 
inherent to looming objects (Lee & Reddish, 1981). 

Clearly, perceptual heuristics embody survival functions vital 
to life, and often work remarkably well, despite their relative 
simplicity.

2It is not the intention of this paper to enter the technical debate about Gibsonian 
direct perception versus a perceptual heuristics approach (see Hecht, 1996). 
That may merely be an issue of how many layers deep we allow a network of 
neurons to be defined as “direct” perception, versus the number at which we 
define “heuristic” perception to emerge. Instead, for the sake of simplicity, 
we will use “heuristic perception” to temporarily subsume its direct sibling.

Cognitive heuristics
Cognition occurs at a higher neurological level than percep-

tion and involves higher-level constructs made up of, or derived 
from, lower-level percepts (Papert & Harel, 1991). Again, 
heuristics appear intimately involved in constructionism, as we 
mentally construct models of the world and its characteristics. 
A good example of a cognitive heuristic is satisficing (Simon, 
1955, 1990). Rather than seeking perfectly optimal solutions to 
complex problems, which can be tremendously time-consuming, 
most of us stop searching once we find a choice that “sufficiently 
satisfies” our selection criteria.

Many risk situations are complex but can be estimated, well-
optimized, and satisficed with cognitive heuristics (Marsh, Todd, 
& Gigerenzer, 2004). Viewing a predictive weather display, 
making sense of it, and using it to minimize risk while circum-
navigating weather probably falls into this category. 

Therefore, the search for the perceptual and cognitive heuristics 
underlying those processes forms a theoretical justification for 
the current research.

Risk tolerance
Heuristics such as satisficing involve setting decision criteria or 

thresholds. A threshold embodies the degree of something below 
which or above which represents a cutoff for decision making. 

If one can perceive risks directly, or correlates thereof, or if 
one can mentally construct risk estimates, then the thresholds of 
those qualities, below which no behavioral alteration is necessary, 
can be called one’s risk tolerance.

As previously stated, many of our risk estimates are surpris-
ingly accurate. Yet, the human mind appears particularly poor 
at estimating high-impact, low-probability events (Camerer & 
Kunreuther, 1989). Aviation accidents, and the events leading up 
to them, fall into this category, making aviation safety not only 
an area of great practical concern for all but one of considerable 
interest for decision theory, as well.
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Figure 3. The a) High, b) Medium, and c) Low-risk test pages, shown here at ¼ their actual size. Each 
page contains three smaller risk gradients, separated by light-green “narrows” between them.

 
 a b c 
 

MATERIALS AND METHODS

General Approach
The current study focuses on aviation weather risk behavior. 

The general approach was to capture pilots’ “first impressions” 
about risk in convective weather situations. Because convective 
weather is often chaotic and unpredictable, impulsive decisions 
based on first impressions can lead to situations difficult for 
pilots to later escape. By studying these first impressions, this 
study’s goal is to discover weather features or cues (Wiggins, Azar, 
Hawkins, Loveday, & Newman, 2014) that serve to induce or 
trigger incorrect judgments, which training and/or technology 
could then mitigate or improve. 

Test setup
Figure 3 illustrates the test pages used in the study. These are 

shown at ¼ their actual size (Appendix A shows a two-thirds-size 
version of a sample page, for greater detail).

An abbreviated scale of eight colors was used. These eight 
represented a subset of the NEXRAD color scheme, which is 
itself consistent with the latest available FAA Advisory Circular 
on thunderstorms (AC00-24, FAA, 2013). In our color scheme, 
risk effectively increased as one passed from light green toward 
dark red, and pilots essentially needed to avoid orange-coded areas 
by at least 20 nautical miles, to comply with FAA regulations.

As Figure 3 illustrates, the basic experimental task was for each 
pilot to simply draw a line between a point labeled “Departure” 
and another labeled “Destination.” This line represented the 
flight path they would choose, given the particular set of condi-
tions presented. Since this path then intersected the color-coded 
“weather system” (risk gradient) at various points, that gave us 
information about each pilot’s risk tolerance in that particular 
flight-planning situation. 

Figure 3 details how the test was constructed. The risk gradients 
were shown as three colored structures arranged symmetrically 
along an imaginary line extending from lower-left to upper-right 
on the test page. Note how the lightest-green color forms two 
narrower areas (“narrows” or “gaps”) between the three separate 
gradients. Also note that the shortest possible path (not shown) 

between Departure and Destination would fall directly through 
a red area denoting maximum risk. We expected pilots to avoid 
these red areas by varying degrees, thereby giving valuable sta-
tistical information about their risk tolerance.

Statistical design
The main analysis employed a 3x2 repeated-measures statisti-

cal design, with three levels of a first independent variable (IV) 
and two levels of a second IV, both described below. In repeated 
measures, all participants see all test conditions (as opposed to 
between-groups designs, where different experimental groups each 
see only a subset of test conditions). Repeated measures has the 
powerful advantage of letting each participant serve as his or her 
“control,” meaning that each person’s innate, baseline preferences 
and tendencies (e.g., for risk-taking) will presumably be fairly 
stable across all scenarios, and can be statistically subtracted out 
by comparing each scenario’s results to that individual’s average 
scores (a.k.a., analysis of change scores)

Independent variables
The first main IV was risk level, with three levels (High, Me-

dium, and Low), each shown on a separate page. The colors and 
topology (the exact shape of the figure) were identical on each 
page, but the odds scale for each risk gradient was different. This 
will be detailed momentarily, using Figures 3 and 4.

The second main IV was motivation level. Each page’s instruc-
tions presented two different motivation levels, described in the 
test instructions as:

1.	 Suppose fuel is its normal price and you’re in no hurry. 
Draw a line showing the shortest flight path acceptable 
to you from Departure to Destination. Label it “A.”

2.	 Suppose fuel is twice as expensive and you are late to an 
important engagement. Draw a second line showing the 
shortest flight path acceptable to you. Label it “B.”

A number of other secondary demographic and “hypothesis-
specific” IVs were also collected for modeling purposes (explained 
in Appendix B). These included certificates and ratings, pilot 
age, total flight hours, and two self-rating scales.
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Dependent variables
Several behavioral performance measures were used as depen-

dent variables (DVs) during statistical analysis:
1.	 Path length.3 As we can see in Figure 3, shorter flight paths 

generally meant greater risk tolerance because short flight 
routes cut through the weather, not around it.

2.	 Maximum risk encountered along each path. Most of the 
planned routes intersected more than one colored area. 
The color representing the highest value along a given 
route was used as the measure of risk tolerance.

Note that these DVs were consistent with the “economics 
of flight.” This involves two factors: safety and efficiency. Pilots 
desire to fly safely to a destination in the best time- and most 
fuel-efficient route as possible. Therefore, path length provides 
a metric of efficiency. The shorter the route, the more efficient 
the flight is in terms of time and fuel. Concurrently, maximum 
risk encountered is an estimate of weather hazard. Therefore, it 
is a metric of safety. 

The economics of adverse-weather flight typically dictate a 
cost-benefit tradeoff. Safety and efficiency are frequently nega-
tively correlated, in that, as one increases, the other decreases. 
The shortest flight path through weather is usually not the safest.

Critical Methodological Issues
Minimizing experimenter bias

This type of study raises certain issues having to do with 
experimental procedures (i.e., methodology). One is the risk of 
experimenter bias. Expectations of the experimenter(s) may be 
either overtly or inadvertently transmitted to participants, through 
speech or even nonverbal behaviors. This may, unfortunately, bias 
participants to behave in ways they otherwise might not behave. 

To minimize experimenter bias, standard practices were strictly 
followed. These included a) giving verbal instructions to the ef-
fect that “Realistic behavior is what the study is looking for,” b) 
giving assurances of strict confidentiality of data, c) making a 
conscious effort to minimize nonverbal cues, and, d) generally 
keeping instructions as succinct as possible. This included giving 
pilots no special risk training for this study. They were told only 
what the task was, what the colors and Figures represented, and 
how to complete the task.

Stability of the “weather system” 
One methodological issue had to do with the test itself. Pilots 

were instructed that, given the limitations of this paper-and-pencil 
test, they could assume that the “weather” (the risk gradients) 
would remain static for the duration of their flight. Therefore, 
they could trust their graphical display, and that gaps between 
different gradients would not close unexpectedly.

3The term “path” is used here as the variable name because it is a term common 
to both aviation and mathematics. Otherwise, we can use “path” and “route” 
interchangeably.

This assurance was given to ensure that the pilots would 
not assume (because real weather rarely remains motionless) 
that they ought to “build in a larger safety margin” into their 
flight route. Statistically, this would have resulted in increased 
unpredictability (variance) in the data, which would decrease 
statistical power (the ability to detect true IV effects where they 
did, indeed, exist).

Specifics
Path length measurement

Path lengths were measured with a Scalex PlanWheel SA 
electronic measuring wheel. This is a mechanical wheel that 
rolls along a surface, converting the number of revolutions 
into a measurement of length, with an accuracy of ±0.25%. 
One principal investigator and an assistant separately scored all 
paths twice (i.e., each path was scored four times). Each sepa-
rate scorer’s two values were first compared to eliminate errors, 
which were corrected by re-measurement, and then averaged 
into a single value. The two scorers’ separate averages were then 
checked for interrater discrepancies. Finally, all four individual 
values were averaged to create the official path length for each 
data point. Interrater reliability of scoring will be discussed in 
the Results section.

Risk gradients 
Figure 4 shows how the three risk gradients were colored to 

make them logically similar to an abbreviated NEXRAD com-
posite radar reflectivity color scheme.

Each of the three color-coded scales represented one risk 
gradient used on one test page (e.g., Figure 4a’s scale is 1/8, 
1/16… 1/512, used on the test page of Figure 3a). Within each 
risk gradient, light green therefore represented the lowest-risk 
“weather” on that particular scale (e.g., 1/512), while dark red 
represented the highest risk (e.g., 1/8). 

The odds themselves were defined in the pilots’ instructions 
(Appendix A) as the “probability of significant damage to your 
aircraft by the time you arrive at that place.”4 Note that each 
individual odds value is “twice as dangerous” as the one below it 
(e.g., 1/8 = 2∗(1/16)). Thus, each scale follows a base-2 logarithmic 
(log) scale. Log scales were chosen because they allow a wide range 
of values to be represented, using only a handful of numbers, 
while still allowing fine discrimination between small values.

4The authors are aware that risk is technically defined as some probability related 
to some specified length of time (e.g., say, if you flew through a “1/512” risk 
area for one hour, there might be a 1/512 chance of significant damage to your 
aircraft. However, it was decided to omit from the instructions that reference 
to time, assuming that this level of nuance would be simply be confusing to 
all but a very few pilots with formal training in probability theory (which, as 
it turned out, would have been all but one pilot).
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 a b c 
 Figure 4. The three color-

coded risk scales, a) High, b) 
Medium, c) Low-risk. 

Moving from left to right in Figure 4, the three scales fol-
lowed a base-5 log (e.g., 1/8 = 5∗(1/40)). Thus, 4a is “five times 
as dangerous” as 4b, and so forth.

Going back to Figure 3, note that about 2/3 of the area on each 
test page is white. White represented the ambient, or base-rate 
risk probability—essentially, the odds of coming to harm just 
flying along, well clear of weather. This base rate was arbitrarily 
set at 1/10,000 to logically have a number that was smaller for 
flying outside the weather than flying inside it.5 Essentially, the 
informal logical rule was “White is safest.”

Probing for depth of understanding
The one exception to the “White is safest” rule was the very 

lowest risk value of all (Figure 4c, lightest green cell, risk = 
1/12,800). This was actually lower than the base rate of 1/10,000 
just discussed. In fact, this was a probe designed to see which pilots 
were paying close attention to the risk odds and deeply under-
stood how to use them. This probe requires some explanation.

Recall that each pilot saw three scenarios. In the one scenario 
where lightest green represented “1/12,800” (Figure 3c) any pilot 
deeply understanding probabilities would be less likely to choose 
the “long way around the weather,” since risk and path length 
could both be minimized simultaneously by “shooting the gap,” 
that is, going through one of the two lightest-green “narrows” 
between the three risk gradients (i.e., Figure 3c, path “A” or “B”). 

So, this first probe consisted of that one probability scale 
(1/12,800) in that one scenario (Figure 3c). And, the “output” 
of that probe for that one scenario was whether or not the pilot 
shot the gap. In this one, special scenario, shooting the gap 
would make one suspect that perhaps the pilot understood the 
basics of minimizing risk and maximizing efficiency using this 
type of display. 

5Again, as noted in footnote 3, the experimenters tried to minimize 
confusion by simply presenting the odds, with minimal explanation. Readers 
highly skilled in probability theory will recall that total risk is technically 

( )∏
=

−−=
T

t
ttotal dtpRisk

0

11 , that is, a product of infinitely small risks 

associated with infinitely small time slices, which nonetheless represent a non-
zero risk over some time T. As you may suspect, this paper does not hypothesize 
that this is how the average person actually calculates risk.

To get an even better sense of this, a second probe was 
engineered—a small, white, kidney bean-shaped “island,” visible 
in Figure 3 within the rightmost narrows of all three scenarios.

If a pilot chose to shoot a gap, then it should be done one 
way for Figures 3a and b, and a different way for 3c. If they shot 
a gap in 3a and b, the flight path should go through the white 
“island” (e.g., Figure 3a, path “B”), because the island’s risk was 
defined as lower (1/10,000) than the rest of the gap (1/512 for 
Figure 3a, and 1/2,560 for Figure 3b, respectively).

In contrast, shooting the gap in Figure 3c should not go through 
the white island, because the island’s risk was higher (1/10,000) 
than the surrounding light green area’s defined risk (1/12,800). 
In Figure 3c, path “A” is safer than path “B.”

In full honesty, these probes could not prove that pilots under-
stood the display. But, they could show that they misunderstood 
it, or were not paying attention, both of which are important 
human factors concerns.

Order effects 
Because of three test risk gradients, presentation order might 

exert an unwanted effect. For some reason, it could be that 
presenting the gradients in, say, Low/Medium/High (LMH) 
sequence might produce different results than, perhaps, High/
Medium/Low (HML). This is a standard concern in research 
design and would not be a desirable result.

To guard against such order effects, the 30 three-page tests 
were counterbalanced by risk severity. That is, six different test 
versions were created, each having one of the six mathematically 
possible presentation orders (LMH, LHM, MLH, MHL, HLM, 
HML). Versions were then handed to pilots at random as they 
walked in, presumably distributing any order effect impartially 
across the entire experiment.

RESULTS

The way the test was constructed, the expected main effects 
were risk level and motivation level. Between the three scenarios, 
each on its own page, path length was logically expected to increase 
as overall scenario risk level increased, meaning that pilots should 
fly farther to avoid increased risk. Ideally, however, maximum 
risk encountered would remain relatively stable across pages, if 
pilots truly understood the concepts of risk and odds. 

In contrast, within each separate scenario, as motivation level 
increased, path length was expected to decrease while maximum-
risk-encountered increased. This would logically reflect the 
universal animal-behavioral tendency to take slightly more risk 
if either pushed by circumstance of punishment avoidance or 
pulled by the possibility of reward (Mackintosh, 1974).

As things turned out, this proved to be a rich dataset with in-
teresting individual-difference themes at work as well. Therefore, 
the data will be described both quantitatively and qualitatively.

The pilot demographics are described first, followed by a stan-
dard data check, main effects, individual differences, correlations 
between variables, and simple modeling of risk-taking behavior.
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Table 1. Pilot demographics 
Certificates & ratings Count %   Min Max Mean SD Median 
Instrument-rated 20 67  Age 20 72 29.2 12.5 24 
CFIa 18 60  TFH 15 12000 1368.7 2506.5 475 
CFIIb 15 50  Self-rating 1 7 4.0 1.9 4 
Commercial 18 60        
ATPc 2 7        
Multi-engine 15 50        
aCertified Flight Instructor.  bCertified Flight Instructor--Instrument.  cAir Transport Pilot. 

 
Table 2. Spearman correlations between path length and maximum risk taken. 

 Path length Max risk taken 
 Risk 

gradient 
 High Med High Med 

Motivation  Higher Low Higher Low Higher Low Higher Low 

Pa
th

 
Le

ng
th

 

High High 1        
Low .663 1       

Med High .759 .745 1      
Low .535 .803 .793 1     

M
ax

 
ris

k High High -.833 -.686 -.587 -.392 1    
Low -.556 -.879 -.686 -.741 .644 1   

Med High -.740 -.755 -.851 -.698 .720 .690 1  
Low -.442 -.804 -.699 -.931 .403 .835 .707 1 

p<.05 highlighted dark gray. .01<p<.05 light gray. All others p<.001 
 
 

Pilot Demographics
Thirty GA pilots were recruited from a local flight school. 

Table 1 shows pilot demographics, including certificates and 
ratings. The point of collecting demographics is to assess how 
likely the results of an experiment are to generalize to the popula-
tion at large. Because of the relatively high variability reflected 
in the standard deviations (SD), medians are also shown where 
appropriate.

Participants were mostly flight instructors, as reflected in the 
high percentage of CFIs. Consequently, despite the relatively 
low median age of 24, these pilots had a considerable amount of 
flight experience, with a median total flight hours (TFH) of 475.

Note that 2/3 of these pilots were instrument-rated (IR). This 
important detail will be discussed later.

Pilots were asked to self-rate their own weather flying skill 
on a 1-7-point Likert scale (shown in Appendix B). As Table 1 
indicates, these “self-rating” responses ranged from 1 (“Lower 
5%”) to 7 (“Upper 5%), with both the mean and median equal 
to 4.0, and a standard deviation of 1.9. This implies that, as a 
group, these pilots considered themselves something more than 
novices, yet something less than seasoned experts.

Taken as a group, therefore, these pilots arguably fall somewhere 
between a “perfectly representative sample” (which is virtually 
impossible to obtain) and an unacceptably skewed or biased 
sample. In a very apt sense, they “satisfice” the experimental 
conditions for generalizability of results.

Preliminary Data Check
Appendix D details the standard data-check for distributional 

normality of DVs, outliers, treatment order effects, and interrater 
reliability in the scoring of path length. To summarize, interrater 
reliability is excellent (rSpearman=.958, p<.0001)), and there are no 
significant treatment order effects.

Certain DVs were expected to be non-normal (e.g., bimodality 
of path length, pilot age, TFH, maximum risk taken), and that 
proved to be the case. Therefore, the majority of data will be 

analyzed with nonparametric statistics, particularly ones based 
on rank-ordering (Hollander & Wolfe, 1999).

Relations Between Path Length and Maximum Risk Taken
Table 2 shows the Spearman (rank-order) intercorrelation matrix 

for our two main DVs of path length and maximum risk taken 
along each flight path.

As expected, there is a within-subjects effect, evidenced by the 
positive sign and high significance of correlations within the same 
category. This implies that pilots tend to behave with significant 
consistency across the six scenarios, both on safety (maximum 
risk taken) and efficiency (path length). This supports the use of 
repeated measures to analyze other data.

At the same time, these correlations are not perfect. Shared-
variable variance (R2) across the two DVs (i.e., path length×max 
risk) varies between .154 (-.3922) and .867 (-.9312). This indicates 
that, to some degree, these are different measures, and justifies 
examining them both.

Finally, note that the correlations between safety and efficiency 
measures are negative. As expected, this implies that shorter path 
lengths tend to be riskier.

Main Effects
Ruling out trivial explanations

Any frank discussion of risk tolerance must deal openly with 
potentially trivial reasons why people might exaggerate their own 
willingness to take risks. Society, of course, values bravery, and this is 
a big part of the social status of being a pilot. Yet, scientific research 
ideally needs to distinguish bravery from bravado, particularly in 
situations where there is absolutely no chance of anyone’s actually 
getting hurt. This is a thorny issue, since the Institutional Review 
Boards that approve research protocols typically feel constrained to 
rule out direct punishment for bad behavior (e.g., mild electroshock 
administered after a simulated “crash” is forbidden). This forces the 
experimenter to devise more subtle ways of determining exactly 
how the independent variables influence the dependent variables.
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	 a	 b
Figure 5. a) Mean path length (in cm) and b) mean maximum risk taken as a function of mean scenario risk.

Table 3. Mean path lengths (MPL) and mean maximum risk taken (MMRT). 

Risk 
gradient Motivation Mean path 

lengthA 
MPL, 

disregarding 
motivation 

Mean max 
risk taken 

MMRT, 
disregarding 
motivation 

High Low 27.2 25.4 .00111 .00221  High 23.6 .00332 

Med Low 25.0 24.0 .00054 .00082  High 23.1 .00109 

 Low Low 24.1 23.0 .00033 .00051  High 22.0 .00068 
A Path-length units are centimeters-on-paper. 

 Recall that the statistical design involves repeated measures 
(a.k.a., within-subjects design). One of the attractive features of 
repeated measures design is that each participant serves as his or 
her own control. Statistically, change scores are examined, and 
the effect of examining change scores is that each individual’s 
baseline “bravado level” is theoretically subtracted out during 
the analysis, leaving a purer measure of the effect of the IV(s).

IVs, DVs, and hypotheses 
Recall that the main IV involved three different risk gradients 

and two motivation levels. Common sense supposes that risk-
taking is a function of both risk level and motivation. As risk level 
rises, so should risk-avoidance. As overall motivation level rises, 
so should risk-taking.

Given the way the test was constructed, mean path length (MPL) 
and mean maximum risk taken (MMRT) are two reasonable measures 
of risk tolerance (dependent variables, or DVs). The longer the path, 
the less risk generally taken.6 Similarly, the greater the maximum 
risk encountered along the path—the greater risk generally taken.

Figure 5 graphically shows the MPL and MMRT data, orga-
nized by risk and motivation level. Table 3 gives a more complete 
description, also showing MPL and MMRT collapsed across 
motivation level.

Groupwise main effect of risk level
Groupwise main effect of scenario risk level. The mean scenario 

risk level significantly affected pilot group behavior, but in in a 
way that initially seemed contradictory. As Figure 5a shows, risk 
avoidance (MPL) increased monotonically7 as mean scenario risk 

6 Pilots appeared to take the test seriously. There were no curlicue or “meant-
as-a-joke” paths.
 7Monotonic functions steadily increase or decrease (e.g., are not “U-shaped” 
or “upside-down U-shaped”).

increased, for both motivation levels (plow motivation = .0011 
and phigh motivation = .0005, nonparametric Friedman test 
of rank-orderings). However, so did the level of risk accepted 
(MMRT, Fig. 5b, plow motivation = .0004 and phigh motivation < .0001). So, 
why did pilots, on average, accept increasing risk as the scenarios 
got riskier? This requires explanation.

We suspect that, as a group, these pilots did perceive and 
respond to labeled differences in risk, but more within scenarios 
than between them. In other words, colors representing greater 
risk did stimulate more risk-avoidance behavior. However, some 
pilots seemed not to pay strict attention to the numerical values 
as they changed from one scenario to the next. Instead, they may 
have adopted an simplified, non-numeric rule such as “Green 
is pretty safe, red is dangerous, and everything else lines up in 
between.”

Therefore, as a group, these GA pilots did perceive and respond 
to labeled differences in risk. On average, colors representing 
greater risk appeared to stimulate risk-avoidance behavior. How-
ever, this conclusion is not cut-and-dried. There was consider-
able variation between pilots, as shall be seen in the Individual 
Differences section.

Main effect of motivation level 
Motivation level also significantly affected behavior. Figure 

5a shows that higher motivation led to shorter MPL. This held 
across all three risk levels (MPL=24.1 vs. 22.0 with plow risk = .0002, 
25.0 vs. 23.1 with pmed risk = .0003, and 27.2 vs. 23.6 with phigh risk 
= .0004 for the nonparametric Wilcoxon test).

Individual Differences
It is important to discover average group characteristics 

about risk displays and how those affect aircraft navigation in 
the presence of differential motivation levels. At the same time, 
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Table 4. Percentage of pilots with maximum 
risk taken ≥ .00125 (1/800) chance of serious 
damage to the aircraft. 

 Overall scenario risk level 
Motivation Low Med High 

Baseline (low) 6.7 6.7 36.7 
Higher 17.2 24.1 75.9 

 
individual differences are also important for a deeper under-
standing of the range of how individual pilots think about risk 
(or fail to). Did all pilots uniformly and completely understand 
all underlying principles of probability? Or, did understanding 
vary, as do most other kinds of knowledge and skill? If so, what 
mechanisms were most likely at work causing this variation in 
risk perception and/or tolerance?

Appendix C details the analytic method, the results of which 
are summarized here.

1.	 Many pilots superficially appeared to tolerate an extraor-
dinarily high degree of risk (Table 4),

	 a.	 particularly in the higher-motivation conditions and
	 b.	 during the single highest-risk scenario
2.	 Some pilots may simply not have been paying close at-

tention to the numerical risk scales.
3.	 Many pilots may misunderstand the concept of absolute 

risk (as opposed to relative risk).
	 a.	 Relative risk varied according to the color scheme 

within each scenario. Green was always relatively safer 
than yellow, which was safer than red, and so forth.

	 b.	 Absolute risk was stated as the numerical odds of harm 
associated with each color. This changed across scenarios. 

Heuristics and Themes
If people rarely coldly calculate numerical risks, what are some 

simplifying heuristics they use as substitutes? Do all people use 
all heuristics, or do different people adopt different heuristic 
“styles?” If so, what are some of those styles, and what evidence 
can be found for their use? In instances where no heuristics are 
evident, can pilots at least be grouped with common character-
istics into themes?

Appendix F presents detailed evidence seen for the use of 
heuristics and themes. This is summarized below. Heuristics are 
presented in quotation marks; themes are not. 

An “index of confusion” (Ic) is presented where possible. 
Developed for this study and detailed in Appendix C, the Ic 
measures the variability (across the six scenarios) of pilots’ 
maximum flight path risk divided by their minimum risk. 
Recall that—ideally—pilots with perfect understanding about 
probability and risk odds should have a strict idea about how 
much risk is acceptable and should, therefore, ideally show the 
same maximum risk tolerance across all three risk gradients. Ic 
therefore measures that degree of uniformity (variability). Low 
Ic is evidence for “low confusion” and greater understanding of 
risk probabilities.

1.	 “Green means ‘safe,’ red is ‘unsafe,’ and yellow means ‘exercise 
caution.’” Figure A-3 in Appendix C amply shows that 
yellow and red tend to be avoided. But, beyond that, there 
is almost certainly a strong bias to resist assigning radical 

new meanings to these colors, perhaps because of lifelong 
experience with highway traffic lights. This conclusion 
is supported by heuristics 2 and 3 below. Many pilots 
have also flown successfully through light rain (green on 
NEXRAD), perhaps leading to a deep-seated feeling that 
“green isn’t particularly dangerous,” no matter what risk 
an experimenter might artificially try to assign it.

2.	 “Always pick green.” (n=5, Table A-11, Ic=19.1). One 
intriguing heuristic involved five pilots who always flew 
through green areas, regardless of what numerical risk 
was actually associated with those areas. They apparently 
meant not to take high risk, but did so accidentally, in not 
fully understanding the risk gradients. This also relates 
to heuristic 3.

3.	 The high-risk gradient was confusing to many. By examin-
ing various threshold values for maximum-risk-tolerated, 
we could see if any of the three risk gradients may have 
seemed confusing to pilots. It appears that the high-risk 
(H) scenario was often confusing. We hypothesize that 
the WSR-88D Intensity Legend (Appendix F, Figure A-9) 
already associated with NEXRAD proactively interfered 
with learning the odds associated with our color scheme. 
Pilots already familiar with “safe colors” versus “unsafe 
colors” probably had difficulty replacing their existing 
notions for the arbitrary new ones we asked them to 
temporarily learn.

4.	 “Avoid all colored areas.” (n=2, Table A-7, Ic=2.0). Two 
pilots always deviated around all colored areas, regardless 
of those areas’ numerical risk or the scenario’s motivation 
level. While arguably staying fairly safe by avoiding all 
colored areas, these pilots failed to pay close attention 
during the lowest-risk scenario, where light green meant 
risk below ambient level.

5.	 “Top-rated pilots take risks.” (n=10, Table A-8, Ic=7.2). 
Non-instrument-rated (non-IR) pilots are supposed to 
avoid convective weather. Yet all 10 of the non-IR pilots 
were willing to fly at least into green areas. Nine of these 
were students at a top local flight school, actively pursu-
ing advanced training. This tempts us to speculate that 
those pursuing a higher status may think and act a lot 
like those already holding it (Kolman, 1938).

6.	 “Avoid risk unless there’s a compelling reason.” (n=8, Table 
A-9, Ic=8.1). Eight pilots uniformly accepted greater risk 
under all higher-motivation conditions (high fuel price 
plus being late to an engagement) than they did under 
low-motivation conditions. Six of these varied widely in 
risk tolerance across gradients, implying confusion over 
what the numerical risk scales meant. 

7.	 “Resist small motivations.” (n=14, Table A-10, Ic=7.9). The 
exact opposite of the “compelling reason” heuristic is that 
some pilots appear “motivation-resistant.” For the most 
part, this heuristic encourages safety. Nine pilots were 
uniformly motivation-resistant across all three scenarios. 
An additional five were resistant across two scenarios. The 
relatively high average Ic was mainly due to high scores 
for just four pilots.
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Table 5. Spearman r between selected variables (significance level is in parentheses if p < .10). 
 Path length Max risk Age TFH IR SR PKA Eq. 2 

Age  .264 -.209 1      
TFH  .346 (.091) -.188  .386 (.057) 1     
IR  .130  .005 -.183  .769 (<.001) 1    
SR -.099  .151  .073  .608 (.001)  .639 (<.001) 1   

PKA  .370 (.048) -.377 (.044) -.010 -.050 -.160 -.266 1  
Eq. 2  .418 (.053) -.218  .367  .420 (.058)  .168  .158 -.051 1 
Eq. 3  .413 (.056) -.210  .367  .420 (.058)  .178  .166 -.051 1.00 (<.001) 

SR   = Self-rating.  PKA = Personal knowledge of aviation accident. 
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Oddly, self-rating (SR) appears unrelated to age but, rather, 
highly related to TFH and IR (green-highlighted cells). Yet, 
self-rating is unrelated to risk tolerance.

The decision-making theory of availability (Kahneman et 
al., 1982) states that cognitive/affective constructs that are eas-
ily accessible (“available”) to awareness are the ones most likely 
to bias decision making. For our purposes, the basic idea can 
be summed up as “If it happened to someone I know, it could 
happen to me.” 

This comports well with common sense. Logically, having 
personal knowledge of someone who had an aviation accident 
should reduce risk tolerance, as measured by our test. The more 
serious the accident(s), the closer the people involved to the pilot, 
and the closer in time the accident(s) was/were, the greater the 
correlation should be between an availability metric and path 
length and/or maximum risk tolerated.

Table 5 embodies the results for three preliminary, very simple 
risk-tolerance models. First, personal knowledge of someone 
involved in an aviation accident (PKA) was a simple yes/no mea-
sure, allowing for up to two accidents, so the scale ran from 0-2. 

Equation 1 represents a second, additive model; Equation 2 
represents a third, multiplicative model. In these two models, 
the “availability effect” is assumed to decay over time.

(1)

(2)

Here, the ith pilot’s risk tolerance is a function f of the seri-
ousness S of the accident, the closeness C of people involved, 
and how long ago in time t it happened. Appendix B shows the 
7-point Likert scale forming S and the 3-point scale forming 
C. As previously stated, up to two accidents could be coded for 
each pilot.

Table 5 shows that PKA—the simplest model of all—was 
actually a slightly better performer than the Equations 1 and 2 
models. This may have been because the Equations 1 and 2 mod-
els were plagued by missing data from seven pilots who left the 
t-values blank for 11 accidents they otherwise supplied data on.

In the end, since the models’ correlations with our DVs are 
only barely significant, and since none of the other IVs’ correla-
tions are significant, we should halt modeling here. What Table 5 
gives us is some preliminary indication that an availability-based 

8.	 “No risk too great.” High risk tolerance is a tricky category 
to assess. For one, it depends on how one defines “high.” 
Also, it can reflect confusion, not true risk tolerance. 
With that in mind, there were just two pilots showing 
uniformly high risk tolerance, defined as 1/256 (.00391) 
chance of inflicting serious damage to the aircraft.

9.	 Overt risk calculators. Only one pilot overtly wrote 
his acceptable risk threshold on the test sheets. This 
was a private pilot working on his instrument rating. 
Unfortunately, his risk tolerance was also quite high 
(1/100, .01). 

On the one hand, one should not read too much into this 
one case. One cannot assume that understanding probabilities 
leads to being more risk-tolerant.

On the other hand, it probably is safe to assume that most 
pilots—just like the vast majority of people—are not highly 
trained in probability theory. That is not surprising. Nor is it 
terribly hard to remedy, if research such as this finds it necessary.

Modeling Flight Risk Factors
Modeling should be reserved until after one has some feel 

for the data. Ideally, one desires to know what it was about 
these particular pilots (IVs) that modulated their risk tolerance 
(DVs). Models can often shed light on the relations between 
IVs and DVs. 

It is wise to first examine simple relations, such as correlations, 
before exploring more complex models. Table 5 shows Spear-
man rank-order correlations between our DVs of path length 
and maximum risk tolerated (for the medium risk gradient/
high-motivation condition), and the IVs of age, TFH, instru-
ment rating (IR), the self-rating scale, whether or not a pilot had 
personal knowledge of anyone involved in an aviation accident, 
and two “risk-availability” metrics that will be explained below.

The medium-risk gradient is chosen here because its risk 
values seemed to best represent a range we might see in the real 
world. It also seemed the least confusing to pilots.

Unsurprisingly, Table 5 shows near-significant positive correla-
tions between age and TFH, and significant correlation between 
TFH and IR (both highlighted gray). As expected, older pilots 
and IR pilots also tend to have more flight hours, although there 
is actually a negative correlation between age and IR here, since 
many pilots in this sample were young flight instructors.
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model is probably worth exploring in future studies. The form 
of that modeling equation should probably resemble 

to capture the effects of both main and interaction terms. Around 
60 participants would be needed (15 per parameter), and they 
should be monitored to ensure that they provide complete data. 

DISCUSSION

Graphical weather displays such as NEXRAD are now exten-
sively being used by general aviation pilots. NEXRAD provides 
radar reflectivity mosaics useful to assessing flight risk during 
flight planning. 

NEXRAD is not a “risk display,” per se. Rather, it displays 
colored regions, which represent radar reflectivity values. These 
serve as a proxy for relative risk as pilots plan flight routes.

Human factors issues associated with such risk-proxy 
displays are an area of interest to the FAA. Most particularly, 
our study’s goal was to understand the broader safety and ef-
ficiency benefits that graphical risk displays in general might 
bring, versus any tendencies they might have to induce undue 
tactical risk-taking (e.g., by pilots attempting to pick their 
way through overly narrow gaps between chaotic convective 
weather cells).

The current study attempted to address such questions. 
Using a simple paper-and-pencil test (depicted in Appendix 
A), 30 GA pilots drew six flight paths from a departure point 
to a destination point. Eight different numerical levels of risk 
(supposedly posed by weather) were combined on each page to 
create colored risk gradients similar to the colored “topographic” 
radar-reflectivity maps seen in displays like NEXRAD. Three 
different risk gradients were presented, each in the context of 
two different levels of motivation. Pilots’ risk tolerance, based 
on measures such as flight path length and maximum risk toler-
ated were estimated. The data were then analyzed quantitatively 
and qualitatively.

Two significant quantitative findings emerged. First, with 
“motivation” operationalized as “fuel cost combined with 
time pressure,” higher motivation led to shorter flight routes 
(greater efficiency), but at the cost of higher stated risk toler-
ance (greater risk). This is not surprising and is consistent with 
what is known about risk-benefit tradeoffs and the psychology 
of decision making.

Second, however, many pilots’ exhibited surprisingly high 
apparent risk tolerance. Shown in Figure A-3 and Table 4, even 
given a threshold level of “1/800 chance of serious risk to the 
aircraft”—nearly 20 times higher than actual U.S. accident rates 
per flight hour—almost 37% of pilots accepted at least that 
much risk in the low-motivation/high-risk gradient condition, 
and nearly 76% in the high-motivation/high-risk gradient condi-
tion. Moreover, in more than half the flights tested here, pilots 
appeared to exhibit risk tolerances in excess of formal national 
policy goals (Appendix E shows derivation of that estimate).

There are several plausible explanations for this finding of 
high apparent risk tolerance, none of which imply that these 
were foolhardy pilots. First, it could simply be that people act 
braver on artificial tests than they do in actual circumstances 
where they could face serious harm. This can never be completely 
ruled out in any study of this type (although our quantitative 
methodology was designed to minimize its effects).

Third, aviation accidents are rare events, and comprehension 
of low probabilities is simply not some-thing many are good at. 
Beneath what may seem like risky behavior may be a very human 
tendency to think “It doesn’t matter as much how dangerous 
something may be, if I don’t do it very often.”

 All these potential explanations are reasonable and worth 
considering. In all likelihood, multiple effects may be at work 
to affect a pilot’s risk tolerance. 

 Moreover, pilots may assess complex qualities, such as risk, 
through the use of simplifying rules (heuristics). For that reason, 
qualitative individual-differences analysis was conducted. This 
led to the identification of several likely themes and heuristics. 
These are detailed in the Results section. 

 To summarize these heuristics, only one of 30 pilots gave 
evidence of being an “overt risk-calculator.” The rest appeared 
to “guesstimate” in one way or another. As mentioned above, 
there ap-peared to be a strong tendency for pilots to associate the 
meanings of colored areas with prior experience, specifically “red 
means danger,” “yellow means caution,” and “green is relatively 
safe.” This prior association seemingly caused many pilots to 
disregard the actual, stated risk values and to substitute their 
own, preexisting meanings. This has profound implications for 
the design of such displays—namely that it is unwise to assign 
meanings to colors that seriously challenge what users already 
think those colors mean.

CONCLUSIONS

Pilots—like most people—vary in their stated levels of risk 
tolerance. But, there can be many reasons why.

For one, society reveres pilots for their courage, “skewing 
the mean upward,” and perhaps creating inordinately high risk 
tolerance for those it casts its reverence upon.

Second, most pilots—like most people—use risk heuristics. 
These are simplifying rules, rather than complex mental calcula-
tions. A small number of these heuristics are clearly mistaken, 
unsafe, and need to be recognized and trained-out. The remaining 
majority is usually based on an intention of reasonable risk-taking 
and safe-yet-efficient flying, and need only be “tuned” to make 
sure they accomplish those goals. 

That “tuning” should involve making these heuristics plain, 
not leaving them unconscious. It should involve training pilots’ 
minds to clearly understand the risks associated with things like 
various kinds of adverse weather. They should, for instance, 
understand the NWS WSR-88D Weather Radar Precipitation 
Intensity scale and Weather Radar Echo Intensity Legend (see 
Figure A-9), and know that “Orange and worse are the colors 
you need to clear by at least 20 nautical miles.”

(3)
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FUTURE RESEARCH

A modification of this paper-and-pencil study, using a third 
motivation condition,8  has already been conducted. Forty-two 
pilots have been tested, and those data await analysis. That analysis 
should greatly contribute to the development of methodology 
for the general research paradigm.

The most important addition to this overall paradigm would 
be to computerize it, enabling visual presentation of dynamic, 
NEXRAD-like weather and/or risk-proxy gradients. That capa-
bility could be inexpensively set up as a part-task psychophysics 
test, giving greater control over the gradients in question, their 
severity, and movement. Such a paradigm would bring us closer 
to identifying the information in the stimulus that forms the 
beginning of this type of pilot decision making.
 

8Appendix A shows the two current motivation conditions. The added condition, 
meant to evoke “extremely high motivation for safety,” is “Suppose you have a 
very close family member on board (wife, child, sibling, or parent).”

Emotions also need to be trained. Pilots have to become 
“motivation-resistant,” and maintain a clear “do-not-cross line” 
when it comes to risk under normal circumstances. They should 
be comfortable with not having to prove their courage to them-
selves or anyone else. 

Finally, the color schemes in predictive displays should be 
kept relatively simple and consistent with those that pilots 
already know, for example from NEXRAD. Any great changes 
will simply result in confusion and lowered overall safety in the 
National Airspace System.
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APPENDIX A
Sample “High Risk” Test

This shows a sample “high-risk test,” one of three risk gradients presented to pilots. The task was for each pilot to draw a line 
between the “Departure” and the “Destination,” representing the flight path they would choose, given the set of conditions presented. 
This was intended to elicit individual risk tolerance. Two different motivation conditions were described in the instructions (shown 
below), resulting in two paths that could be compared for path length, maximum level of risk encountered, and risk heuristics.

This cockpit display shows the probability of significant damage to your aircraft by the time you arrive at that place. For 
the purposes of this experiment, assume the weather front is completely static. Therefore, this single snapshot is quite reli-
able, even over time.

A.	 Suppose fuel is its normal price and you’re in no hurry. Draw a line showing the shortest flight path acceptable to 
you from Departure to Destination. Label it “A”.

B.	 Suppose fuel is twice as expensive and you are late to an important engagement. Draw a second line showing the 
shortest flight path acceptable to you. Label it “B”.

Lines “A” and “B” can be the same or different. There are no “right” or “wrong” answers, except according to your own 
standards of safety. Answers are completely confidential and will never be entered into your airmen record.

Figure A-1. Sample page from the test, showing the colored risk scale, its 
associated odds of serious damage to the aircraft, and the NEXRAD-like 
“topographic” risk gradient.
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APPENDIX B
Demographic Questions

The demographic questions put to pilots were: a) (top, left) basic information on certificates and ratings, b) (top, right) a 
7-point Likert scale representing pilots’ self-rating of their weather flying skill and experience, c) (bottom, left and right) the scales 
and information used to construct the “availability metric” of Equations 2 and 3 in the Results section. To test the availability 
hypothesis, we asked pilots if they personally knew of anyone involved in an aviation accident. The assumption 
was that personal knowledge of such an accident would be more cognitively/emotionally “available” and, there-
fore, bias that pilot to be more cautious. 

 
 
  Please check all that apply 
 
  Private pilot  CFII  Multi-engine 
  Instrument-rated  Commercial _____Age 
  CFI  ATP _____Total 
flight hours 
 
 
 
 Q: Has anyone you know 
personally been involved in an 
aircraft accident of any kind?  Yes     
No  
 
 Q: If “Yes,” about how 
many years ago?  How serious was 
it? Use the table at right.  If 
multiple people were involved, write numbers in the boxes. You can list up to 2 separate 
accidents.  
 

How would you honestly rate yourself in terms of 
weather flying skill and experience? (check one) 
       
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APPENDIX C
Individual Differences

This appendix discusses individual differences—the analysis of individual pilot responses—in which we attempt to discover 
and quantify commonalities among pilots, thereby identifying heuristics and themes. This type of analysis is rarely presented in 
journal articles because it may lack the mathematical rigor of standard quantitative analysis, usually takes up far too much space, 
and can be painfully tedious to read. Nonetheless, at the very least, astute researchers recognize its value in generating hypotheses 
for future research. And, when conducted carefully and cleverly, it can lead us to conclusions we would have overlooked, had we 
not invested the effort.

One caveat does need to be made clear: This individual differences analysis will not use repeated measures methodology. Con-
sequently, there is no statistical way to control for exaggeration or bravado in analyzing causes of risk tolerance. Therefore, one 
should interpret these data conservatively.

Color scheme. The test’s color scheme and risk levels are detailed below in Figure A-2.

Overall risk tolerance. The first thing evident in graphing out risk tolerance is the seemingly high degree of risk that some pi-
lots appear to tolerate, particularly when motivation is elevated. Compare the maximum-risk-taken levels (the horizontal axes in 
Figures A-3a-b) for this study’s pilots to the actual 2010 U.S. non-commercial GA total (fatal+non-fatal) accident rate of about 
0.000063 accidents per flight hour (AOPA, 2011). Pay particular attention to the numbers of pilots (the vertical axes) stating 
risk tolerance greater than 0.00125 (1/800 chance of serious damage to the aircraft), which is 19.8 times greater than the actual 
2010 accident rate (podds ratio < .00001).

 

     
Figure A-2. Rank-ordered risk categories as odds and 
decimals. These ranks are used in the tables that follow, to 
represent maximum risk taken on a specified flight path, and 
can be used to visualize the participant’s risk strategies.

Figure A-3. Frequency histograms of stated maximum risk tolerance for a) low-motivation (baseline) A-condition. 
(AL=lowest risk, AM=medium risk, AH=highest risk), b) higher-motivation B-condition. The horizontal (x) axis represents 
risk level, the vertical (y) axis represents numbers of pilots.

  
 a b 
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Clearly, something is happening when this many pilots state they would take on this much risk. We saw earlier, in the context 
of repeated measures, that part of the effect involves motivation level. But, what else can explain the rest of this seemingly high 
risk tolerance?

Unfortunately, we cannot easily dismiss exaggeration. But, we can argue that its effect is minimal in the Low (L) and Medium 
(M) scenario risk level conditions, because Table 4 shows those percentages to be relatively small. Only in the High (H) risk 
condition is tolerance inordinately high.

Over the course of the next few pages, we will argue that this seemingly high risk tolerance is actually mainly due to misunder-
standing of relative versus absolute risk.

Understanding relative risk. Most of these pilots seemed to understand the basic color-coding of relative levels of risk within a 
single scenario. In other words, red is more dangerous than yellow; yellow is more dangerous than green, and so forth. We can infer 
that by noting that only one pilot drew purely straight paths from Departure to Destination (which took him directly through 
red cells). Everyone else drew curved paths, as one would expect.

Curved flight paths would be more expensive, in terms of time and money. Given the reasonable assumption that people value 
time and/or money, then this near-universal willingness to trade these for safety implies that these pilots understood the basics of 
risk differentiation (by color) and risk prioritization (by internal cognitive construct of threat level).

In other words, they understood relative risk.
We can further support this by looking at how motivation affected their maximum levels of acceptable risk (Appendix C, Table 

A-4), although the data are occasionally confusing.
Logic says that risk tolerance should increase (or, at least, not decrease) with motivation. This proved generally, but not com-

pletely true. In 80 of the 90 scenarios, pilots accepted as much or more maximum-risk-taken for the high-motivation (path “B”) 
condition than for the low-motivation (path “A”) condition pWilcoxon < .000001). In contrast, in nine of those 90 scenarios, a total 
of seven of the 30 pilots (23%) “flipped” and accepted less risk in H than in L (which one could argue shows misunderstanding 
of relative risk). 

So, what of those nine troublesome reversals? Appendix C shows us exactly who those seven pilots were, and details the risk 
and motivation levels of the scenarios (Tables 7-9). 

We conclude that these seven pilots were simply not paying close attention to all the odds on the scale.
Confusion over absolute risk. How well did pilots understand absolute risk, from one scenario to the next? Did pilots pay close 

attention to the actual numbers stated on each page (the odds)? Did they understand those odds with a firm-enough grasp of 
probability to apply them uniformly from one scenario to the next?

If we have an absolute idea what odds mean—as opposed to just a relative idea—then, for a given level of motivation, we 
should generally pick pretty much the same maximum acceptable risk from one scenario to the next. 

The data do not support that picture at all. In only one case did a pilot (#22) specifically state his acceptable risk criterion, 
overtly showing a grasp of probabilities. This single individual consciously accepted any risk less than 1/100, and made that clear 
by writing “less than .01” on the test sheets.

All other evidence of probability awareness has to be inferred by us indirectly from the data. A few pilots showed relatively 
uniform risk tolerance across scenarios. But, in most cases, their tolerance varied considerably from scenario to scenario, indicat-
ing misunderstanding of absolute risk.

To better visualize the entire group’s range of risk understanding, we can create a small “uniformity metric.” Let us first divide 
the data into low-motivation (path “A”) and high-motivation (path “B”) conditions, because we know that motivation modulates 
risk tolerance. Next, to use “A” trials as an example, let us calculate a ratio between the maximum acceptable risk each pilot was 
willing to take in those three “A” trials, divided by the minimum acceptable risk for the same three trials. Then, this ratio (Eq. 4) 
can directly measure uniformity across all three “A” trials. 
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As detailed in Appendix E, we can define an “ideal” ratio of RMax/Min < 2, because of the way the test is constructed. And, we 
can use that “ideal” of risk tolerance uniformity as a measure of absolute risk understanding.1 The greater RMax/Min rises above 2, 
the more the pilot may be confused about probability.

	 (4)

Figure A-4 shows the frequency histogram for RMax/Min.

Figure A-4 shows 19 instances of Equation 4 being at or below the ideal score of 2, versus 40 above it (pbinomial = .004). This sug-
gests significant confusion about what absolute odds mean and how one would go about setting up three separate flight paths with 
similar risk. From Table 4, we can see that this confusion appears to be particularly strong when colors represent very high risk levels.

Now, let us expand RMax/Min into a “index of confusion” (Ic) by adding points each for instances where pilots either
a.	 in the lowest-risk gradient, failed to traverse light green, which was safer than ambient risk (1 pt), 
b.	 in the lowest-risk gradient, in traversing light green, intersected the white, bean-shaped “island,” which actually represented 

greater risk (1/10000) than the surrounding light green (1/12800, ½ pt), or 
c.	 in the medium and high gradients, in traversing light green, failed to intersect the white, bean-shaped “island,” which now 

represented lower risk than the surrounding light green (½ pt). 

1 Because each risk is itself an odds, Equation 1 is technically an “odds ratio.” However, we cannot use it to determine statistical significance (as we can a 
standard odds ratio) since its components are not based on actual, repeated numbers of Bernoulli trials.

Figure A-4. Numbers of pilots (y-axis) scoring at 
various levels of RMax/Min (Eq. 4, x-axis) for the low-
motivation (A) condition and higher-motivation (B) 
condition. Any odds ratio score > 2 suggests pilot 
confusion about odds.
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In the tables that follow, cells meeting condition a, b, or c will be superscripted with the matching letter (Appendix E, Table 
A-6 contains the full listing of such errors).2

Metrics such as Ic, while admittedly somewhat arbitrary, will allow us to better construct a compelling argument for notions 
such as the one that many pilots are coming pre-biased with internal affective and cognitive constructs of what colors represent 
within a risk context. We can further argue that trying to shoehorn existing color schemes into representing extremely high risk 
levels may not make much sense.

Misunderstanding of relative risk for seven pilots. Seven pilots misread the lowest-risk scenario, where the lightest green actually 
represented a risk level lower-than-background. Shown in Figure A-5a, pilots 4, 5, 10, 24, and 26 all took one of the two long 
ways (path A1 or A2) around the entire weather system in the low-motivation condition, while cutting through the “valley” con-
taining the bean-shaped “island,” and cutting through the island in the higher-motivation (path B) condition. Meanwhile, pilot 
14 (Figure A-5b) took the long way around in both A and B conditions, but “cut the corner” into the light green in B, resulting 
in a slightly shorter path length. Finally, pilot 29 took the long way around in A, cutting through the dark green in the process, 
while, in B, cutting through the valley and traversing the island, just like 4, 5, 10, 24, and 26.

2  We fully realize the arbitrary nature of this point assignment, and acknowledge that its validity and reliability have not been established. Nonetheless, there 
is merit in attempting to understand the degree to which pilots misunderstood (or ignored) the odds presented here. And, having even a crude system of 
prioritizing misunderstanding is arguably better than no system at all.

10 
 

 
 
 
 
 
 
 
 
 
 
 
Table A-2. Maximum risk accepted for low-motivation scenario (“A”). 
Risk 
level 

Pilot ID 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Low 22i 20 15 21 21 22i 22i 22i 19 21 22i 22 22 21 22 17 22i 22i 21 21 22 9 21 21 22i 21 22i 22i 20 22i 
Med 18i 18 11 21 21 18i 18i 18i 16 21 18i 18i 21 21 21 18i 18i 18i 18 21 18 8 21 18i 21 21 21 18i 16 18 
High 13i 13i 10 21 21 13i 21 13i 13 21 21 21 21 21 21 21 21 21 13i 21 21 7 21 21 21 21 21 13i 10 13i 

 N   N N N N N  N N  Y N Y  N N N N     N N N N N N 
Cat. G G R W W G Gw G  W Gw Gw gW W gW  Gw Gw  W Gw R W  gW W gW G G G 

“I” denotes the white, bean-shaped “island” within the lightest-green scale (ranks 13, 18, and 22). 
 
Table A-3. Maximum risk accepted for higher-motivation scenario (“B”). 
Risk 
level 

Pilot ID 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Low 22i 20 15 22i 22i 9 19 22i 17 22i 12 19 22 22 22 15 22 17 20 21 17 9 21 22i X 22i 22i 22i 22i 19 
Med 18i 18 11 21 21 8 18 18i 11 18i 11 16 21 18 18i 16 18 14 18 21 16 8 21 18 X 18i 18i 18i 18i 14 
High 13i 13i 7 21 21 3 13i 13i 7 13i 13i 13i 21 13 13i 13i 21 13 13i 21 13i 7 21 13i X 13i 21 13i 13i 7 

 N   N N  N N  N   Y  Y     N   N N  N  N N  
Cat. G G R gW gW R  G R G   gW G G  Gw R G W  R W G -- G Gw G G  

 
Table A-4. Consistency between low-motivation (“A”) and higher-motivation (“B”) scenarios. 
Risk 
level 

Pilot ID 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Low = = = < < > > = > < > > = < = > = > > = > = = < X < = = < > 
Med = = = = = > = = > > > > = > > > = > = = > = = = X > > = < > 
High = = > = = > > = > > > > = > > > = > = = > = = > X > = = < > 

“>” means “Took more risk with high-motivation (n=33), “<” means the opposite (n=9), “=” means A and B were identical (n=40). 
“X” means “Pilot refused to fly.” 
 

Table A-1. Categorization of pilot behavior.   
  Risk level   

Category Heuristic Low Med High NA NB 
W “Always pick white” 21 21 21   
G “Always pick green” 22 OR 20 18 OR 16 13 OR 10   

Gw “Low & Med=green, High=white” 22 OR 20 18 OR 16 21   
gW “Low=green, Med & High=white” 22 OR 20 21 21   
R High risk-taking <19 <18 <21   
E Evidence of a probability error      
       
 True Probability Calculator r ≈r ≈r   

X Refused to fly      
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This does not necessarily reflect anything dire. It probably only means that these seven pilots were not paying close attention 
to all the odds on the scale. No one told them there was going to be an anomaly here. So, if they only attended to, say, the odds 
associated with red and yellow, we should not read too much into this particular error. What it may indicate is simply that not 
everyone thinks about probabilities in terms of absolute numbers. Many of us may code these concepts relatively. If so, that is an 
interesting, important finding, and we will see if we can find more support for that notion as we proceed in our analysis.

Figure A-5. Lowest-risk scenario flight paths of pilots a) 4, 5, 10, 24, and 26, b) 14, and c) 29

   
 a b c 
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APPENDIX D
Preliminary Inspection of Data

This appendix details an inspection of the dependent variable (DV) data. Statistics rest on assumptions, for instance about how 
DV response variation is distributed. Violation of these assumptions can lead to incorrect use of statistics. It is vital, therefore, 
to check certain DV characteristics, such as frequency distributions, to ensure that the choice of statistical methods is correct.

Path length frequency distributions are bimodal. Pilots could fairly safely avoid risk by taking a “short way through the valley,” 
avoiding “risk mountains.” Or, they could always take the “long way around” the entire system. We therefore expected path lengths 
to be bimodal, and that was clearly the case. Figure A-6 shows a typical histogram for path lengths.

Notice how paths less than 26 cm fall cleanly into one category, while those greater than 26 fall cleanly into another.1 This 
means we should analyze paths not as normally distributed, with standard parametric statistics, but rather nonparametrically, 
with statistics based on rank order.

Maximum risk frequency distributions are skewed. Figure A-7 shows the histogram for the medium-risk gradient, higher-motivation 
condition for the DV of maximum risk taken.

1 As shown later in Table A-6, there was only one individual (Pilot 25) who declined to fly in the three higher-motivation 
scenarios, resulting in path lengths of zero for those three scenarios.

 
Figure A-6. Frequency histogram of path lengths for 
the high-risk, low-motivation condition. The y-axis 
represents numbers of pilots. The x-axis shows 
binned path lengths, in cm.

 
 a b 
 Figure A-7. Frequency histogram of maximum risk taken for the medium-risk, higher 

motivation condition.
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This non-normal shape is typical of the others for that DV. Notice the long right-hand tail and how the overall distribution 
resembles a gamma or Weibull function.

Outliers. Figure A-8 shows the histograms for age and total flight hours (TFH). These distributions are also non-normal (skewage 
= 2.284, SEskew,age = .464, pz,skew,age < .00001; skewTFH = 3.375, SEskew,TFH = .464, pz,skew,TFH < .00001).

 
Therefore, again, most analysis should be done with nonparametric statistics.
Treatment order effects. During testing, one would not want to see average risk tolerance increasing or decreasing merely as 

one particular risk gradient followed another (gradient-order effect) or merely as the test progressed (temporal-order effect). That 
would imply that risk tolerance is an unstable trait, influenceable by factors such as priming, fatigue, boredom, or learning effects. 

As stated earlier, to guard against gradient order effect, six versions of the test were created. These were handed out randomly as 
pilots walked in the door. One still has to check for temporal order effect, however, since that cannot be counterbalanced. Every 
3-page test unavoidably has a first, second, and third page, no matter what happens to be on each page.

Statistical analysis shows no evidence of significant temporal-order effect. At first blush, the mean ranks of the data seem to 
decrease monotonically by page (Table A-5), which might imply an order effect—namely, pilots taking increasing risk as time went 
on. However, a nonparametric repeated-measures Friedman test was not significant. Nor are the mean path lengths themselves 
uniformly monotonic.

Interrater reliability. Given manual path length scoring, we must demonstrate accuracy by having high interrater reliability be-
tween two scorers. That does appear excellent, with rPearson = .998 and the nonparametric rSpearman=.958 (p<.0001). These extremely 
high rs were due to a) the measuring wheel’s high accuracy (±0.25%), b) the large number of pairs correlated (30×3×2=180), and 
c) reliably high consistency between scorers (the mean difference score between pairs was only 1.00 mm, SD 2.13 mm).

Figure A-8. Frequency histograms for pilot a) age, b) total flight hours.

 
 a b 
 

Table A-5. Test of page-order effects.  
Motivation 

level Page Mean path 
length (cm) Mean rank pFriedman 

Low 
1 25.2 2.22 

.085 2 26.2 2.10 
3 24.9 1.68 

High 
1 23.1 2.21 

.203 2 23.1 2.03 
3 22.5 1.76 
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APPENDIX E
Analysis of Individual Risk Tolerance

This appendix describes the very finest-grained analysis of each pilot’s risk tolerance. By color-coding the numerical risk-taken, 
patterns become much easier to spot. Please refer to Figure A-2 in Appendix C for the detailed color-coding scheme used in the 
tables below.

Maximum risks taken. Table A-6 shows the maximum risk accepted by each pilot for each trial. These are color-coded to reflect 
the maximum-risk color intersected by each flight path.

Note that, in the low-risk scenarios, a cell can be colored light green, which has an associated risk level of .00008 (1/12800), 
yet still have a risk level of .00010 (1/10000, associated with “white space”). This is because, even though the flight path traversed 
light green, it still flew through white to get there.

Calculation of RMax/Min. Recall Equation 4

To illustrate from Table A-6, for instance, for pilot #1A, RMax/Min = Max(0.00010, 0.00039, 0.00195)/Min(0.00010, 0.00039, 
0.00195) = 0.00195/0.00010 = 19.5.

Table A-6. Maximum acceptable risk level, by scenario. 

ID IR? 
Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” Scenario risk level Scenario risk level 
Low Med High Low Med High 

1 N 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
2 Y 0.00016 0.00039c 0.00195 0.00016 0.00039c 0.00195 1 12.5 12.5 
3 Y 0.00125 0.00156 0.00391 0.00125 0.00156 0.00781 3 3.1 6.3 
4 N 0.00010a 0.00010 0.00010 0.00010b 0.00010 0.00010 0   
5 Y 0.00010a 0.00010 0.00010 0.00010b 0.00010 0.00010 0   
6 N 0.00010b 0.00039 0.00195 0.00500 0.00625 0.03125 1 19.5 6.3 
7 N 0.00010 0.00039 0.00010 0.00031 0.00039 0.00195 0 3.9 6.3 
8 Y 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
9 Y 0.00031 0.00078 0.00195 0.00063 0.00313 0.00781 1 6.3 12.5 
10 Y 0.00010a 0.00010 0.00010 0.00010b 0.00039 0.00195 0  19.5 
11 Y 0.00010b 0.00039 0.00010 0.00250 0.00313 0.00195 0 3.9  
12 Y 0.00010 0.00039 0.00010 0.00031 0.00078 0.00195 0 3.9 6.3 
13 Y 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0   
14 Y 0.00010a 0.00010 0.00010 0.00010a 0.00039c 0.00195c 0  19.5 
15 N 0.00010 0.00010 0.00010 0.00010 0.00039 0.00195 0  19.5 
16 Y 0.00063 0.00039 0.00010 0.00125 0.00078 0.00195 0 6.3 2.5 
17 N 0.00010b 0.00039 0.00010 0.00010 0.00039 0.00010 0 3.9 3.9 
18 N 0.00010 0.00039 0.00010 0.00063 0.00156 0.00195 0 3.9 3.1 
19 Y 0.00010a 0.00039c 0.00195 0.00016 0.00039c 0.00195 1 19.5 12.5 
20 N 0.00010a 0.00010 0.00010 0.00010a 0.00010 0.00010 0   
21 Y 0.00010 0.00039c 0.00010 0.00063 0.00078 0.00195 0 3.9 3.1 
22 N 0.00500 0.00625 0.00781 0.00500 0.00625 0.00781 3   
23 Y 0.00010a 0.00010 0.00010 0.00010a 0.00010 0.00010 0   
24 Y 0.00010a 0.00039 0.00010 0.00010b 0.00039c 0.00195 0 3.9 19.5 
25 Y 0.00010b 0.00010 0.00010 refused to fly 0   
26 N 0.00010a 0.00010 0.00010 0.00010b 0.00039 0.00195 0  19.5 
27 Y 0.00010b 0.00010 0.00010 0.00010b 0.00039c 0.00010 0  3.9 
28 Y 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
29 Y 0.00016 0.00078 0.00391 0.00010b 0.00039 0.00195 1 25.0 19.5 
30 Y 0.00010b 0.00039 0.00195 0.00031 0.00156 0.00781 1 19.5 25.0 

aPilot failed to recognize that light-green risk < ambient (baseline) risk within the low-risk gradient. 
bPilot intersected the white, bean-shaped “island” representing greater risk within the low-risk gradient. 
cPilot failed to intersect the white, bean-shaped “island” representing lower risk within the medium- or 
high-risk gradient. 

 

Min

Max
MinMax odds

oddsR =/
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Calculation of pilot risk tolerance stated in the Executive Summary. In the Executive Summary, we reported that “in more than 
half the flights tested here, pilots appeared to exhibit risk tolerances in excess of formal national policy goals.” That figure was 
estimated by counting the number of flights (95) in Table A-6 (Appendix E) having maximum-risk-accepted of greater than the 
baseline rate 0.0001, divided by the total number of flights made (30*6 = 180). 95/180 = 52.8%. This figure can be deemed 
conservative, since the FAA’s stated do-not-exceed GA accident rate was actually only 1.05 per 100,000 flight hours (0.0000105, 
FAA, 2014), and our hypothetical flight would have lasted less than 2 hr at typical GA flight speeds.

Why the ideal RMax/Min ≤ 2. RMax/Min is a measure of uniformity in risk tolerance. The baseline (ambient) risk is 1/10,000 (0.00010). 
So, for instance, if a pilot “always stays in the white,” RMax/Min will exactly equal (1/10,000)/( 1/10,000)=1.0. If a pilot choosing 
to fly within colored zones never varies more than one color across the three risk gradients, because each gradient’s colors are 
on a log-2 scale, RMax/Min will never exceed 2.0. Note that most large values of RMax/Min come from transitions from white to color, 
particularly when the pilot flies through color on the high-risk (H) gradient. That often denotes failure to attend to the odds that 
the colors represent.
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APPENDIX F
Underlying Pilot Heuristics and Themes

This appendix attempts to distill and summarize everything learned from the data into the final product of heuristics and 
themes—the ultimate goal of individual-differences analysis. Again, refer to Figure A-2 in Appendix C for the detailed color-
coding scheme used in the tables below.

“Green means ‘safe,’ red is ‘unsafe,’ and yellow means ‘exercise caution.’” There is very likely a strong cultural bias to cognitively 
code these colors, perhaps because of lifelong experience with traffic lights.

“Avoid all risk, all colored areas.” There were only two pilots (20,23) who always deviated around the risk gradient, regardless 
of its numerical value or the stated motivation level. This was probably not due to chance (pbinomial < 4.3×10-7, assuming a 50% 
chance of Y/N monolithic decision style for two of 30 pilots). 

Of these two, pilot 20 was not instrument rated (IR), which makes good sense, since non-IR pilots are taught to avoid weather. 
Oddly, pilot 23 was IR, certified commercial, rated for multi-engine, and a certified flight instructor, including instrument (CFI/
CFII). So, we seem to have that one potentially suspicious data point that we should “red-flag” and perhaps discount.

Recall that uniform avoidance of all colored areas on the test implies that these pilots did not pay full attention to the lowest-
risk scenario, where light green meant risk below ambient level. In Table A-7, cells superscripted “a” reflect that error.

These two pilots probably represent fairly risk-averse individuals, so focused on safety that they missed the anomaly here. But, 
there is also a dimension of caution we should consider, and that has to do with the fact that, even though this was a static test 
with reassurances that the colored cells would not close in or expand, pilots may have still applied dynamic mental models to 
construct their own risk estimates. A written comment from one pilot illustrates:

“From my experience with weather, no risk is worth the reward. I’ve heard of too many accidents  
where a plane is flying through a ‘no-risk’ area that closed upon them.”

Technically, this is known as proactive interference, where what has been learned previously interferes with new learning (Mack-
intosh, 1974, pp. 478-81).

“Top-rated pilots take risks.” As we just saw, uniform weather-avoidance was not a popular heuristic, even with the 10 non-IR 
pilots. Table A-8 shows these non-IR’s age and total flight hours (TFH) where reported,1 and risk tolerance.

Note that, since the lowest-risk scenario was designed to encourage pilots to fly through the lightest-green area, those instances 
should not be considered errors but, rather, possible successes.

1 We could not require pilots to report any potentially identifying information they felt uncomfortable reporting.

Table A-7. Maximum acceptable risk level, by scenario. 
 IR? Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” S Scenario risk level Scenario risk level 
  Low Med High Low Med High 

20 N 0.00010a 0.00010 0.00010 0.00010a 0.00010 0.00010 0 1 1 
23 Y 0.00010a 0.00010 0.00010 0.00010a 0.00010 0.00010 0 1 1 

Tot. # comparisons = 4. ΣRmax/Min = 4.  µmax/Min = 6.9.  4 “confusion points” are added for cells 
superscripted with a. Therefore, ΣConfusion  =  4+4 = 8. µConfusion =8/4= 2.0. 

 



F2

At first glance, Table A-8 might disturb us, because it implies that non-IR pilots might seem willing to fly into actual adverse 
weather. Yet, consider that, except for pilot 6, these were all private pilots working on their instrument rating. They were students 
at a top flight school, actively pursuing advanced training, preparing themselves to deal with future risks. Theoretically, people 
pursuing a higher status may think and act a lot like those already holding it (Kolman, 1938).

Moreover, their risk tolerance is statistically indistinguishable from the IR pilots on any of the six risk gradient/motivation 
combinations (range of pMann-Whitney U .588-.982, NS). So, any lessons to be drawn from them are no different than those to be 
drawn from the entire group. The lesson here is just that students working on an “advanced degree” can be expected to think and 
act a lot like those already holding that degree.

Only pilot 6 remains a “person of interest” from the individual differences perspective. Young, low-experience, non-IR, rela-
tively high risk tolerance—we cannot say how many there are in the general population, but we can argue that there are probably 
a small number.

“Avoid risk unless there’s a compelling reason.” Eight pilots (6,9,11,12,16,18,21,30) always accepted greater risk under all three 
high-motivation “path B” conditions than they did under the three low-motivation (“path A”) conditions.

For these eight, a “compelling reason” was high fuel price plus being late to an engagement. Both are common reasons for tak-
ing some additional risk. The question is how much. Table A-9 shows this in both absolute and relative numbers (highlighted in 
gray and yellow, respectively). The medium-risk (M) gradient arguably represents the best to focus upon, given that L contained 
anomalies, and H appeared confusing to pilots.

Resist small motivations. The exact opposite of the “compelling reason” heuristic is that some pilots appear “motivation-resistant.” 
Table A-4 in Appendix C indicates that, of the 90 A-B comparisons, 40 times (44%) pilots accepted the same stated risk regard-
less of motivation level (represented by an “=” sign). Nine pilots were uniformly motivation-resistant across all three scenarios 
(1,2,8,13,17,20,22,23,28). An additional five (3,4,5,19,27) were resistant across two scenarios. Was this invariant response the 
result of considered reason, or was it merely an automatic, trained response or heuristic at work?

Table A-8. Maximum acceptable risk, non-IR pilots only. 

ID Age TFH 
Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” Scenario risk level Scenario risk level 
Low Med High Low Med High 

1 24 120 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
4  100 0.00010a 0.00010 0.00010 0.00010b 0.00010 0.00010 0   
6 27 15 0.00010b 0.00039 0.00195 0.00500 0.00625 0.03125 1 19.5 6.3 
7   0.00010 0.00039 0.00010 0.00031 0.00039 0.00195 0 3.9 6.3 
15 35 200 0.00010 0.00010 0.00010 0.00010 0.00039 0.00195 0  19.5 
17 45 150 0.00010b 0.00039 0.00010 0.00010 0.00039 0.00010 0 3.9 3.9 
18   0.00010 0.00039 0.00010 0.00063 0.00156 0.00195 0 3.9 3.1 
20   0.00010a 0.00010 0.00010 0.00010 0.00010 0.00010 0   
22 26 180 0.00500 0.00625 0.00781 0.00500 0.00625 0.00781 3   
26 20 92 0.00010a 0.00010 0.00010 0.00010b 0.00039 0.00195 0  19.5 

Tot. # comparisons = 20. ΣRmax/Min = 137.9.  µmax/Min = 6.9.  3 “confusion points” added for the a-
superscripted cells, 3 for the b-superscripted. ΣConfusion  =  137.9+6 = 143.9. µConfusion = 7.2. 

 

Table A-9. Maximum acceptable risk level, by scenario. 

ID IR? 
Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” 
RiskA/RiskB Scenario risk level Scenario risk level 

Low Med High Low Med High Low Med High 
6 N 0.00010b 0.00039 0.00195 0.00500 0.00625 0.03125 1 19.5 6.3 50.0 16.0 16.0 
9 Y 0.00031 0.00078 0.00195 0.00063 0.00313 0.00781 1 6.3 12.5 2.0 4.0 4.0 
11 Y 0.00010b 0.00039 0.00010 0.00250 0.00313 0.00195 0 3.9  25.0 8.0 19.5 
12 Y 0.00010 0.00039 0.00010 0.00031 0.00078 0.00195 0 3.9 6.3 3.1 2.0 19.5 
16 Y 0.00063 0.00039 0.00010 0.00125 0.00078 0.00195 0 6.3 2.5 2.0 2.0 19.5 
18 N 0.00010 0.00039 0.00010 0.00063 0.00156 0.00195 0 3.9 3.1 6.3 4.0 19.5 
21 Y 0.00010 0.00039c 0.00010 0.00063 0.00078 0.00195 0 3.9 3.1 6.3 2.0 19.5 
30 Y 0.00010b 0.00039 0.00195 0.00031 0.00156 0.00781 1 19.5 25.0 3.1 4.0 4.0 

Tot. # comparisons = 16. ΣRmax/Min = 127.6.  µmax/Min = 8.0.  1.5 “confusion points” added for b-superscripted cells. 
ΣConfusion  =  127.6+1.5 = 129.1. µConfusion = 8.1. 
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For the most part, Table A-10 shows that this heuristic encourages safety but does not guarantee it. In the case where the low-
motivation risk tolerance was high, it means that the higher-motivation risk tolerance is also high, because the heuristic is not 
based on any particular understanding of probability, as evidenced by the high levels of RMax/Min for those cases.

“Always pick green.” Another intriguing heuristic involved pilots 1,2,8,28,29, who always flew through green areas, regardless 
of what numerical risk was actually associated with those areas.

Based on their high RMax/Min ratios and a tendency to misunderstand the lowest-risk condition, we can argue that these were the 
pilots most confused about what the risk odds meant. In fact, they constituted the right-hand tail in Figure A-8. They apparently 
meant not to take high risk, but did so accidentally in not fully understanding the risk gradients.

The high-risk gradient was confusing. If we set the threshold slightly more liberally at 1/640 (0.00156), the only pattern that 
emerges is a lot of stated risk tolerance on the high-risk H scenario (11 cases on the baseline “A” motivation level and 22 cases on 
the higher “B” motivation level). Again, this supports the notion that the H scenario was confusing to pilots, with the risk values 
(the odds) probably conflicting with their prior biases of what colors should mean.

Table A-10. Maximum acceptable risk level, by scenario. 

ID IR? 
Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” Scenario risk level Scenario risk level 
Low Med High Low Med High 

1 N 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
2 Y 0.00016 0.00039 0.00195 0.00016 0.00039 0.00195 1 12.5 12.5 
3 Y 0.00125 0.00156 0.00391 0.00125 0.00156 0.00781 3 3.1 6.3 
4 N 0.00010a 0.00010 0.00010 0.00010b 0.00010 0.00010 0   
5 Y 0.00010a 0.00010 0.00010 0.00010b 0.00010 0.00010 0   
8 Y 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
13 Y 0.00010 0.00010 0.00010 0.00010 0.00010 0.00010 0   
17 N 0.00010b 0.00039 0.00010 0.00010 0.00039 0.00010 0 3.9 3.9 
19 Y 0.00010a 0.00039c 0.00195 0.00016 0.00039c 0.00195 1 19.5 12.5 
20 N 0.00010a 0.00010 0.00010 0.00010a 0.00010 0.00010 0   
22 N 0.00500 0.00625 0.00781 0.00500 0.00625 0.00781 3   
23 Y 0.00010a 0.00010 0.00010 0.00010a 0.00010 0.00010 0   
27 Y 0.00010b 0.00010 0.00010 0.00010b 0.00039c 0.00010 0  3.9 
28 Y 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 

Tot. # comparisons = 28. ΣRmax/Min = 208.3.  µmax/Min = 7.4.  7 “confusion points” added for a-cells, 
5.5 for b-cells, 1.5 for c-cells. ΣConfusion  =  208.3+14 = 222.3. µConfusion = 7.9. 

 

Table A-11. Maximum acceptable risk level, by scenario. 

ID IR? 
Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” Scenario risk level Scenario risk level 
Low Med High Low Med High 

1 N 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
2 Y 0.00016 0.00039c 0.00195 0.00016 0.00039c 0.00195 1 12.5 12.5 
8 Y 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
28 Y 0.00010b 0.00039 0.00195 0.00010b 0.00039 0.00195 1 19.5 19.5 
29 Y 0.00016 0.00078 0.00391 0.00010b 0.00039 0.00195 1 25.0 19.5 

Tot. # comparisons = 10. ΣRmax/Min = 186.5.  µmax/Min = 18.7.  3.5 “confusion points” added for b-cells 
and 1 for c-cells. ΣConfusion  =  186.5+4.5 = 191.0. µConfusion = 19.1. 
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Figure A-9 shows the latest intensity color scheme, based on the latest FAA Advisory Circular on thunderstorm avoidance (AC 
00-24C, FAA 2013) available at the time of this writing

We can hypothesize that the WSR-88D Intensity Legend constituted another example of proactive interference. Pilots already 
familiar with “safe colors” versus “unsafe colors” probably had difficulty replacing their existing notions for the arbitrary new ones 
we asked them to temporarily learn.

No risk too great. High risk tolerance is a tricky category to assess because it could reflect confusion, not true risk tolerance; 22 
pilots who accepted at least one risk equal to or exceeding 1/512 (0.00195). 

Increasing our threshold to 1/256 (.00391) eliminates most of this “noise,” leaving just two pilots (6,22) with areas of uniformly 
high risk tolerance.

And only one was uniformly high across both motivation conditions (22). Both happened to be non-IR, but that could be 
coincidental (pbinomial = .11, NS).

Overt risk calculators. As stated earlier, pilot 22 (who keeps turning up in a number of our heuristics) was the only one to write 
his stated risk threshold (.01) on the test sheets. He was therefore a high risk tolerator and, we also saw earlier, a private pilot 
working on his instrument rating.

The idea of high risk tolerance coupled with high understanding of probabilities is certainly interesting, although we should 
not try to generalize on the basis of a single case.

Figure A-9. NWS WSR-88D Weather Radar Precipitation Intensity 
scale and Weather Radar Echo Intensity Legend.

Reflectivity range (dBZ) <30 dBZ 30-40 dBZ >40-50 dBZ >50 dBZ 
WSR-88D terminology Light Moderate Heavy Extreme 

 
 

Table A-12. Maximum acceptable risk level, by scenario. 

ID IR? 
Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” Scenario risk level Scenario risk level 
Low Med High Low Med High 

6 N 0.00010b 0.00039 0.00195 0.00500 0.00625 0.03125 1 19.5 6.3 
22 N 0.00500 0.00625 0.00781 0.00500 0.00625 0.00781 3 1.6 1.6 

Tot. #comparisons = 4. ΣRmax/Min = 29.0.  µmax/Min = 7.3.  .5 “confusion point” added for b-cell. 
ΣConfusion  =  29+.5 = 29.5. µConfusion = 7.4. 

 

Table A-13. Maximum acceptable risk level, by scenario. 

ID IR? 
Motivation “A” (baseline) Motivation “B” (higher) Tot “A” ≥ 

0.00125 
RMax/Min 

“A” 
RMax/Min 

“B” Scenario risk level Scenario risk level 
Low Med High Low Med High 

22 N 0.00500 0.00625 0.00781 0.00500 0.00625 0.00781 3   
Tot. #comparisons = 2. ΣRmax/Min = 3.2.  µmax/Min = 1.6.  µConfusion = 1.6. 
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