The Use of Task-Specific Lenses by Presbyopic Air Traffic Controllers at the En Route Radar Console

Van B. Nakagawara
Kathryn J. Wood
Civil Aeromedical Institute
Federal Aviation Administration
Oklahoma City, Oklahoma 73125

December 1996

Final Report

DISTRIBUTION STATEMENT A
Approved for public release.
Distribution Unlimited

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22161.
NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof.
The Use of Task-Specific Lenses by Presbyopic Air Traffic Controllers at the En Route Radar Console

Van B. Nakagawara, O.D.; Kathryn J. Wood

FAA Civil Aeromedical Institute
P.O. Box 25082
Oklahoma City, OK 73125

Office of Aviation Medicine
Federal Aviation Administration
800 Independence Ave., S.W.
Washington, DC 20591

This work was performed under task AM-A-95-PHY-156.

Abstract

Introduction: The configuration of the radar console to control aircraft traffic has similar features to a visual display terminal (VDT) work station. Task-specific lenses have been found in clinical studies to reduce visual symptoms while working at the VDT. The American Optical Corporation TruVision Technica®, a task-specific lens design, was evaluated to see if visual benefits from such a lens could be transferred from the VDT environment to the radar console work environment.

Methods: Presbyopic Air Traffic Control Specialists (ATCSs) at the Houston Air Route Traffic Control Center were fitted with two prescription spectacles, using their current and Technica® lens designs, in similar ophthalmic frames. Each ATCS used both lens designs at the radar console and provided subjective evaluations of their appropriateness in that environment.

Results: Thirteen (13) subjects (45.6 ± 5.9 years of age, range 36-55 years) completed the study. Subjects who used larger near viewing area (single vision and executive) lens designs generally preferred their current lens design. The Technica® was preferred by mature presbyopes (add power of ≥ 1.25 diopters) and those using smaller near viewing area (FT-25, FT-28 and general progressive addition) lens designs. The primary complaints reported by ATCSs with the Technica® were peripheral distortion and limited field of view.

Conclusions: Task-specific lens designs are an alternative for presbyopic ATCS who work at a radar console. However, distortion and limited field of view from the lens may require prolonged adaptation times before such designs are acceptable to ATCS on the job, especially for those accustomed to lens designs with larger viewing areas.
ACKNOWLEDGMENTS

The authors would like to acknowledge American Optical Corporation and in particular Suzanne Nylander, O.D., Director of Professional Relations, for their technical and financial support of this work. We gratefully acknowledge the outstanding clinical and administrative support provided by the representatives from Krug Life Sciences, Inc., of Houston, Texas, including: Mr. Michael Caputo, Keith Manuel, O.D., Robert Gibson, O.D., and Mrs. Donna Winter-Manuel. We wish to thank Anthony Zeigler, M.D., retired Southwest Regional Flight Surgeon for his administrative and moral support, and the management and staff of the Houston Air Route Traffic Control Center in Houston, TX, for their time, patience, and kindness shared with the research staff during this project.
THE USE OF TASK-SPECIFIC LENSES
BY PRESBYOPIC AIR TRAFFIC CONTROLLERS
AT THE EN ROUTE RADAR CONSOLE

INTRODUCTION

The primary goal of the Air Traffic Control (ATC) system, which is under the jurisdiction of the Federal Aviation Administration (FAA), is to prevent collisions between aircraft. This goal is achieved by providing a safe and orderly flow of air traffic, utilizing the air space as efficiently as possible. An Air Traffic Control Specialist (ATCS), or controller, is a person authorized to provide air traffic control service (4).

There are three basic ATC facilities: 1) Terminal Radar System Area covers the airspace surrounding designated airports; 2) Automated Flight Service Station transmits weather, flight plan information, and other assistance to pilots; and 3) Air Route Traffic Control Center (ARTCC) provides air traffic control during the en route phase of the flight between designated airport terminal areas.

Figure 1: Schematic of the En Route Radar Console
(Note: Plan View Display is the radar display, while the D Console holds flight progress strips).
At the ARTCC, each airspace sector may have one to three controllers assigned the function of separating aircraft. The radar controller issues altitude, heading or airspeed changes to keep the aircraft separated. The radar associate/nonradar controller assists by separating aircraft that do not appear on the radar display, updating flight progress strips, and assuming aircraft separation responsibility if the radar display malfunctions. The ARTCC, or en route, controller must be "stress tolerant" and "attentive to detail" as their occupation requires they maintain current assessment of the rapidly changing location of each aircraft (in three-dimensional space) and their projected future locations relative to each other along with other pertinent aircraft parameters (destination, fuel, speed, etc.).

The en route ATCSs have a work environment with unusual visual demands (See Figure 1). The configuration of their work station makes visual correction, particularly of older ATCSs, challenging as conventional spectacle lens designs may often be unsuitable. Ophthalmic lenses are routinely prescribed by eye doctors to correct for presbyopia, a normal decrease in near vision focusing ability (accommodation) of the eye that occurs with age. The presbyopic eye cannot change focus from far distance (20 feet and beyond) to see closer objects clearly. That focusing must be done using spectacles or contact lenses. Spectacle lenses may be used to correct for near vision (normally prescribed at 14-16 inches) in the form of single vision (SV) and multifocal lenses (See Figure 2). Both distant and near vision can be corrected with multifocal lenses of standard bifocal designs, while a trifocal lens adds a correction for intermediate vision (about 28-32 inches).

Progressive addition lenses (PALS) are specially designed to correct presbyopia (See Figure 3). PALS eliminate the bifocal or trifocal segment lines and provide a continuous focus from far to intermediate to near distances. PALS are popular due to their aesthetics, clear viewing at all distances, and their ability to eliminate image jumps or blurred zones inherent in standard bifocal and trifocal lenses. The drawbacks to general-purpose PALS include a relatively narrow vertical/horizontal intermediate and near vision zone, distortion in the lens periphery, difficulty in fitting, higher cost, and an extended wearer adaptation period.

The en route radar console is similar to that of computer and video display terminal (VDT), as it has a video monitor and a keyboard. The American Optical Corporation's TruVision Technica® is a task-specific, progressive power lens design that has been shown in clinical trials to provide the computer user with a more comfortable, usable correction than with standard multifocal lens designs. The Technica® has a narrow distant viewing area while providing wider intermediate and near vision zones, as compared to general-purpose PAL designs. The Technica® aberration zones are pushed to the top of the lens, while PALS have distortion near the bottom of the lens. The other difference between Technica® and general-purpose progressives is that, instead of having the correction for distant vision at the center of the lens, Technica® has the intermediate vision correction at that point (See Figure 3). Technica® was designed to meet the needs of the typical computer and VDT user who views a screen located at a distance equal to 60-80% of their near add power, and at a viewing angle 10 - 20° below straight-ahead gaze. Upon review of the en route radar console, it was concluded that the work station environment was similar enough to that of the VDT user to merit evaluation of the Technica® lens as an occupational lens to correct the vision of presbyopic ATCSs while working at such a unit.

The objective of this study was to conduct a subjective comparison of the performance of the Technica® with the lens designs currently worn by presbyopic en route ATCS at their work environment. The comparison was to determine whether the visual benefits of the Technica® unique design could be transferred from the VDT environment to the radar console environment, thus increasing efficiency by reducing work-related stress, fatigue, and the number of visual and physical complaints of ATCSs at work.
Figure 2: Standard Bifocal and Trifocal Lenses
Figure 3: Progressive Addition Lens vs. TruVision Technica®
METHODS

Twenty (20) presbyopic ATCSs 35 years of age and older who worked at the en route radar console a minimum of 20 hours per week were to be selected. After receiving approval for the testing by management and union representatives, the Houston ARTCC in Houston, TX, was selected as the test site. Contractual support was obtained for clinical and administrative services (Krug Life Sciences of Houston, TX) and ophthalmic manufacturing services (Duffens Optical of Houston, TX).

An overview of the study was presented at controller team briefings on-site and flyers were posted throughout the Center. The offer of receiving two free pairs of prescription eyeglasses encouraged participation. Interested controllers were initially interviewed by telephone, during which the purpose of the study, time schedule, qualifications, compensation, etc., were discussed.

Selected subjects had to meet the following requirements: 1) they must have had a complete vision examination within the past 12 months; 2) they must wear prescription lenses for near or intermediate vision while working at the en route radar console for at least 20 hours per week; 3) the subject's spectacle prescriptions must meet the parameters available in the Technica® lens (Note: No subject was ruled out due to prescription specifications); 4) they must have anticipated being based in the Houston area for 12 months after inclusion into the study; and 5) they must consent to a medical screening at the Center to rule out any active ocular or systemic pathology, which could affect their vision or refractive prescription stability.

A copy of the description of the study and an Informed Consent Sheet were mailed to all prescreened applicants. Qualified ATCSs were asked to bring these forms, all eyeglasses and refractive prescriptions, and workstation measurements to their initial on-site visit. At this visit, the Informed Consent Sheet was signed by each ATCS, an evaluation of current lenses (likes, dislikes, limitations, problems, etc.; See Appendix A), and subject information forms were completed (hours at console, years working as an ATCS, visual and physical complaints, medical history, ophthalmic measurements of the optical devices, etc.; See Appendix B).

After analyzing each subject's refractive prescription and eyeglasses, an ophthalmic frame was selected from a 10-frame fitting set. Two complete pairs of eyeglasses were ordered in identical frames: one duplicate of the original prescription lenses worn at the radar console, and one pair of Technica® lenses. There were two subjects who wore "over-the-counter" multifocal lenses at the radar console, rather than the refractive prescription from their most recent eye exam. Duplicate eyeglasses dispensed for those two subjects, were full-view SV lenses incorporating the refractive correction of their most recent eye exam. The completed eyeglasses were verified to ensure they met both the American National Standards Institute standards (ANSI Z80.1 - 1987, American National Standards for ophthalmics - prescription ophthalmic lenses - recommendations) and the requirements in the American Optical's TruVision Lifetime System of Lenses® Fitting Manual.

A second visit to the Houston ARTCC was scheduled for each subject to dispense the completed eyeglasses. During this visit the new spectacles were fitted to each subject, adaptation and use of the Technica® lens design was explained, and instructions for the periods of use for both pairs of eyeglasses were provided. Each subject was asked to wear the Technica® lenses for near point leisure activities for one week. If the subject felt comfortable with Technica® at the end of the week, they were asked to wear the Technica® exclusively while working at the radar console for a 4-week period. At the end of this period, each subject was personally interviewed by means of an initial Technica® evaluation questionnaire (See Appendix C). During the fifth week, the subjects were asked to alternate between the new version of their original lenses (i.e., current lens design) and Technica® at work. At the end of that week, a second comparative experience survey (See Appendix D) was administered. A final follow-up evaluation (See Appendix E) was completed three months later to verify any change in lens design preference at work.
RESULTS

Thirty senior ATCSs responded to our request to be test subjects, but only thirteen (n = 13) qualified for inclusion. The reasons for rejection included lack of time working at the radar console (n = 12) (many applicants were supervisors who spend limited time controlling traffic at the radar console), medical disqualification from working as controllers (n = 2), and failure to follow up after their initial inquiry (n = 3).

The mean age of the 13 subjects was 45.6 ± 5.9 years (range 36–55 years). By coincidence, all subjects were male. The average intermediate working distance as specified by the subjects was 88.9 cm ± 2.9 cm (range 84.7–95.1 cm).

The preponderance of eyes were hyperopic (farsighted), with no subject exceeding 2.00 diopters (D) of myopia (nearsighted) or hyperopia, and the majority were near emmetropia (no refractive error) with corrections less than or equal to ± 0.50 D. Anisometropia (difference in refractive error of the two eyes) did not exceed 0.87 D (spherical equivalent), and the maximum astigmatism correction was -0.75 D.

Table 1 presents each subject’s preference by age, type of lens correction worn, and add power required. Subjects who used multifocal lenses (except those who wore Executive lens designs), preferred the Technica®, while most SV lens wearers preferred their current lens design at work. All of the subjects who preferred Technica® were ≥ 44 years of age and had adds powers ≥ +1.25 D.

The ATCSs’ subjective complaints with their original lens designs while at work are presented in Table 2. The most prominent symptoms reported included blurred vision (10) and eye strain (5). Table 3 presents subjective complaints reported with the Technica® at the radar console. The Technica® lens reduced eye strain in two of five subjects while inducing it in three others. Blurred vision was eliminated in five of ten subjects who had reported this problem with their original lens designs. The most numerous subjective complaints with the Technica® were from distortion (8) and limited field of view (10).

Five of the 13 controllers (38.5%) reported that vision through their original corrective lenses contributed to work-related stress. The five who subsequently

<table>
<thead>
<tr>
<th>SUBJECT NO.</th>
<th>AGE</th>
<th>CURRENT RX LENS</th>
<th>ADD POWER</th>
<th>PREFERRED RX</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44</td>
<td>BIFOCAL (FT 28)</td>
<td>+ 1.25</td>
<td>Technica®</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>SINGLE VISION</td>
<td>+ 1.00</td>
<td>*</td>
</tr>
<tr>
<td>3</td>
<td>48</td>
<td>TRIFOCAL (EXEC)</td>
<td>+ 2.00</td>
<td>*</td>
</tr>
<tr>
<td>4</td>
<td>47</td>
<td>SINGLE VISION</td>
<td>+ 1.50</td>
<td>Technica®</td>
</tr>
<tr>
<td>5</td>
<td>49</td>
<td>BIFOCAL (EXEC)</td>
<td>+ 2.00</td>
<td>*</td>
</tr>
<tr>
<td>6</td>
<td>51</td>
<td>BIFOCAL (FT 35)</td>
<td>+ 2.00</td>
<td>Technica®</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>SINGLE VISION</td>
<td>+ 1.00</td>
<td>*</td>
</tr>
<tr>
<td>8</td>
<td>45</td>
<td>SINGLE VISION</td>
<td>+ 1.00</td>
<td>*</td>
</tr>
<tr>
<td>9</td>
<td>53</td>
<td>SINGLE VISION</td>
<td>+ 2.50</td>
<td>*</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>SINGLE VISION</td>
<td>+ 2.00</td>
<td>*</td>
</tr>
<tr>
<td>11</td>
<td>47</td>
<td>PROGRESSIVE</td>
<td>+ 1.50</td>
<td>Technica®</td>
</tr>
<tr>
<td>12</td>
<td>36</td>
<td>SINGLE VISION</td>
<td>+ 1.00</td>
<td>*</td>
</tr>
<tr>
<td>13</td>
<td>45</td>
<td>SINGLE VISION</td>
<td>+ 1.50</td>
<td>Technica®</td>
</tr>
</tbody>
</table>

Note: * Denotes Subject preferred current Rx.

Table 1: ATCS Preference of Lens Design by Age, Type of Lens Correction Worn and Add Power
<table>
<thead>
<tr>
<th>Symptoms</th>
<th>With Original Rx</th>
<th>With Technica® Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eystain</td>
<td>Subject #: 2, 3, 7, 8, 13</td>
<td>Subject #: 2, 5, 7, 8, 9, 10</td>
</tr>
<tr>
<td>Blurred Vision</td>
<td>Subject #: 2, 4, 5, 7, 8, 9, 10, 11, 12, 13</td>
<td>Subject #: 2, 7, 8, 9, 10, 12, 13</td>
</tr>
<tr>
<td>Headaches</td>
<td>Subject #: 1, 2, 11, 13</td>
<td>Subject #: 7</td>
</tr>
<tr>
<td>Neck Pain</td>
<td>Subject #: 1, 3, 6</td>
<td>Subject #: 6</td>
</tr>
<tr>
<td>Back Pain</td>
<td>Subject #: 2</td>
<td></td>
</tr>
<tr>
<td>Sore/Scratchy Eyes</td>
<td>Subject #: 3, 11</td>
<td></td>
</tr>
<tr>
<td>Distortions</td>
<td>Subject #: 2</td>
<td></td>
</tr>
<tr>
<td>Limited Field of View</td>
<td>Subject #: 2</td>
<td></td>
</tr>
<tr>
<td>Glare/Reflections</td>
<td>Subject #: 5, 10, 12</td>
<td></td>
</tr>
<tr>
<td>Limited Working Distance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Subjective Complaints with Original Lens Correction in the Work Environment.

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>With Technica® Rx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eystain</td>
<td>Subject #: 2, 5, 7, 8, 9, 10</td>
</tr>
<tr>
<td>Blurred Vision</td>
<td>Subject #: 2, 7, 8, 9, 10</td>
</tr>
<tr>
<td>Headaches</td>
<td>Subject #: 7</td>
</tr>
<tr>
<td>Neck Pain</td>
<td>Subject #: 7</td>
</tr>
<tr>
<td>Back Pain</td>
<td>Subject #: 6</td>
</tr>
<tr>
<td>Sore/Scratchy Eyes</td>
<td>Subject #: 1, 2, 5, 7, 8, 9, 12, 13</td>
</tr>
<tr>
<td>Distortions</td>
<td>Subject #: 6, 7, 8, 9</td>
</tr>
<tr>
<td>Limited Field of View</td>
<td>Subject #: 2, 3, 5, 6, 7, 8, 9, 10, 12, 13</td>
</tr>
<tr>
<td>Glare/Reflections</td>
<td>Subject #: 6, 7, 8, 9</td>
</tr>
<tr>
<td>Limited Working Distance</td>
<td>Subject #: 3, 7</td>
</tr>
</tbody>
</table>

Table 3: Subjective Complaints with Technica® in the Work Environment.

preferred the Technica® lenses reported decreased work-related stress, increased efficiency and/or decreased fatigue with this lens design. These controllers also reported fewer visual and physical symptoms and more overall comfort with use of the Technica®. Similarly, subjects who preferred their current lens designs were more complimentary of the virtues of that design in the work environment. At the three month follow-up, all the ATCS who preferred the Technica®, retained the use of the Technica® design while none of the controllers who preferred their current lenses switched to the Technica® design.

DISCUSSION

The majority of en route ATCSs preferred their current lens design (61.5%) over the Technica® design (38.5%) while working at the radar console. In
general, the ATCSs preferred their original lenses if they incorporated near and/or intermediate segments with large surface areas, such as the bifocal and trifocal executive (current: Technica® = 2:0) or SV lens (6:2) designs. Those controllers that use smaller bifocal (0:2) and general-purpose PAL (0:1) designs preferred the Technica® to their original prescription eyeglasses. For the more mature presbyopic ATCSs, intermediate distance viewing becomes more difficult with SV lenses, and traditional multifocal lens designs with higher add powers are required. The study found that 55.6% of subjects ≥ 44 years of age and requiring add powers ≥ 1.25 D preferred the Technica® with its progressive design. It was anticipated that this percentage would be higher. However, for some individuals, the scanning requirements of an ATCS may not be compatible with the limitations imposed by the Technica® relatively narrow intermediate viewing area and the induced distortions of the lens, compared to SV and other multifocal lens designs.

Even with the visual limitations of the Technica®, there is evidence that some controllers felt its benefits were significant. While ten controllers (76.9%) reported limited field of view when using the Technica®, two (20%) of these subjects preferred the Technica® to their current eyeglasses. With the Technica®, eight controllers (61.5%) complained of distortion, and two (25.0%) of these preferred the Technica® to their current eyeglasses. It is possible that older ATCSs accustomed to the wider viewing areas of their current lens designs, would require a prolonged adaptation period to rehabilitate their visual scanning skills and learn to ignore the negative features reported with the Technica®, namely the limited field of view and peripheral distortion.

It is important to note that a substantial number of the test subjects (5) felt that vision with their original lenses contributed to their job stress. Whether this was due to inadequate refractive corrections or unsuitable fit of the eyeglasses was not determined. The five controllers who subsequently preferred the Technica® lenses reported that the lenses decreased stress, increased efficiency and decreased fatigue, or had little to no effect on these work-related symptoms.

Technica® was designed for the VDT user and office employees who work at a desk. When asked if they found the Technica® useful in other situations, nine ATCSs (69.2%) reported using their Technica® at home while working at the VDT, during casual reading, and for watching television. A VDT user normally views a screen equal to 60-80% of their near add and at a viewing angle 10-20° below straight ahead gaze. The fact that the average intermediate working distance of the ATCS test subjects was 88.9 (35") ± 2.9 cm, approximately 45% of the wearer's total add power, makes it considerably further away than the typical computer screen, 40 - 76 cm (16" - 30"). Many people find 51 - 66 cm (20" to 26") most comfortable. A 1989 National Transportation Safety Board recommendation to the FAA states that for the ATCSs, "all corrections required to demonstrate 20/20 vision at all applicable distances should be present in the same pair of corrective lenses" (9). However, an all-inclusive lens for the mature presbyopic ATCS that would provide adequate viewing of all components of the radar console would be difficult, if not impossible to design. For the mature presbyope, improved viewing at one distance, or area of the field of vision, is almost always at the decrement of viewing another. A prior study on the visual ergonomics of the radar console environment revealed that the primary components of the radar console require the ATCS to scan over large surface areas, and specialty lenses may be required for viewing components overhead. It also found that an individual's eye height in relation to the ATCS radar console environment would be an important factor in fitting vision correcting lenses (4). These factors should be included in any future ergonomic redesigns of the on route radar work station.

The study was compromised by the small number of participating controllers. Age may have contributed to this since, for on route controllers, there is not only a maximum entry age (i.e., may not have reached their 31st birthday prior to initial appointment), but also a mandatory separation at 56 years of age from positions requiring direct separation and control of air traffic (9). Other reasons for nonparticipation may have been changing work schedules, the limited num-
ber of presbyopic ATCSs who work at the console (many senior controllers were in supervisory/management positions and could not meet the required number of hours working at the radar console), concern about reporting additional medical information to FAA, and satisfaction with their current vision correction. The requirement that the participants have a current refractive prescription further limited our subject pool, since many individuals do not have routine eye examinations. Even when this condition was met, some current prescriptions were problematic, since several were reported questionable by the contractual vision specialists for the intermediate distance for which they were being used.

A study with quantitative test results of controller performance would have been preferred. However, a performance-based test was not an option in this study, since we could not interrupt the ATCSs while they were controlling air traffic. The use of subjective responses to survey questions, which are not easily quantifiable and are sometimes difficult to interpret, was the most practical method of evaluating the usability and feasibility of these ophthalmic lenses on the job.

In conclusion, for en route ATCS working at the radar console, our test results suggest that a lens type with a wider field of view (SV or Executive) is generally preferable to a Technica® lens design. However, Technica® may be preferable for those ATCSs using smaller multifocal lens designs, such as FT-28, FT-35 or general-purpose PALs. Although the Technica® provides a relative wide intermediate and near vision area, it may not be wide enough for the visual scanning required for work at the radar console, resulting in complaints of distortion and limited field of view. It is possible that the Technica® may be more acceptable in other air traffic activities, such as automated flight service stations, which use more traditional VDT equipment. Although not a panacea for all presbyopic controllers who need corrected vision for near and intermediate distances, the Technica® is a viable option for eyecare practitioners correcting ATCSs with occupational vision problems. The five controllers who preferred the Technica® lenses in this study reported decreased work-related stress, increased efficiency, and/or decreased fatigue. With a longer period of adaptation or with improvements in refractive prescriptions, it is possible that all of our subjects could have adapted to the Technica®. Further study on the corrective needs of presbyopic ATCSs is needed as current demographics of the ATCS population forecast a substantial increase in early and mature presbyopic controllers in the next decade, many of whom will be full performance level ATCSs working at the radar console (4).

REFERENCES

APPENDIX A

Evaluation of Current Lenses

Subject # ____________ Date ____________

Please feel free to indicate values such as 2.5 or 4.5

How well do your current glasses meet your visual needs at work?

1 not at all 2 poorly 3 satisfactorily 4 well 5 perfectly

What limitations do you experience with these glasses?

__

__

What do you like about your current glasses?

__

__

Do you feel that your vision with your current glasses is the same as when you first received them?

yes no

If no, in what way is your vision different?

__

How comfortable are you with your present glasses at work?

1 very uncomfortable 2 uncomfortable 3 satisfactory 4 comfortable 5 very comfortable

Are you experiencing any specific discomfort with your present glasses?

yes no

Please continue to next page.
Appendix A (cont.)

Subject #: __________

If yes, please check off the category and severity of symptoms:

1) eyestrain severity: mild________ moderate________ severe________
2) blurred vision severity: mild________ moderate________ severe________
3) headaches severity: mild________ moderate________ severe________
4) neck pain severity: mild________ moderate________ severe________
5) back pain severity: mild________ moderate________ severe________
6) other severity: mild________ moderate________ severe________

Do you feel that your vision with your glasses contributes to job related stress?

1 not at all 2 to some degree 3 significantly

Please explain:

__

__

Do you have any observations about your vision or your glasses that have not been touched on in these questions? If so, please note below:

__

__

__

A2
APPENDIX B

Subject Information

Date: _____/_____/19____

Subject#: ________________________________ Age: __________

Job Title: ________________________________

Hours/week at radar console: __________

How long working at ATCS: ________yrs., ________months

Work related visual complaints (eyestrain, blurred vision, etc.):

__

__

Physical complaints (headaches, neck or back pain, etc.):

__

__

Health history (please circle all conditions that currently apply):

- glaucoma
- cataracts
- macular degeneration
- hypertension
- diabetes
- other __________________________

Medications (Please list both prescription and non-prescription that are currently used):

__

__

Record Subject's Work Measurements:

Distance from eyes to center of screen _____________

Distance of eyes from floor when working at radar screen _____________
Appendix B (cont.)

Confirm Prescriptions:

Was written Rx available for work Rx? yes / no

Work Rx:

Dates: Rx: _____ / _____ / _____ Lenses: _____ / _____ / _____

Rx PD: _______

Lens style: ____________________________

Rx: Distance Add

OD: ____________________________

OS: ____________________________

Seg or MRP location:

pupil center / _____ mm below / _____ mm above

Differences between Rx and lenses worn:

Home Rx:

Dates: Rx: _____ / _____ / _____ Lenses: _____ / _____ / _____

Rx PD: _______

Lens style: ____________________________

Rx: Distance Add

OD: ____________________________

OS: ____________________________

Seg or MRP location:

pupil center / _____ mm below / _____ mm above
Differences between Rx and lenses worn:

VAs with current Rx:

<table>
<thead>
<tr>
<th>Distance</th>
<th>Intermediate</th>
<th>Near</th>
</tr>
</thead>
<tbody>
<tr>
<td>(distance to radar screen)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OD:

OS:

OU:

#1

Monocular PDs:

<table>
<thead>
<tr>
<th>Dist</th>
<th>OD:</th>
<th>OS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Near</td>
<td>OD:</td>
<td>OS:</td>
</tr>
</tbody>
</table>

Vertical height to pupil center in frame selected for study:

OD: _______mm OS: _______mm

Record Specifications of frame selected for study:

Name:______________________________ Manufacturer:____________________

Eye:_______ Bridge:_______ Temple:_______

Color#1: (Technica®) __________________________

Color#2: (Other style) __________________________

Availability verified #1:________ #2:________

Technica® fitting and cut-out verified:________

<table>
<thead>
<tr>
<th>Duplicate Rx:</th>
<th>Rx Technica®</th>
</tr>
</thead>
<tbody>
<tr>
<td>OD:</td>
<td>OD:</td>
</tr>
<tr>
<td>OS:</td>
<td>OS:</td>
</tr>
<tr>
<td>Add</td>
<td>Add</td>
</tr>
<tr>
<td>Seg Ht OD:</td>
<td>Seg Ht OS:</td>
</tr>
</tbody>
</table>

Complete orders for Technica® and duplicate work lenses and attach copies to this record.
APPENDIX C

Initial Technica® Evaluation

Name: ___________________________ Pt.#: ______________ Date ______________

1.) How long did it take before you were confident enough in the Technica® lenses to use them routinely at work? __________________________

2.) Have you noticed anything different when working with these lenses for 4 weeks?

3.) Please rate your overall satisfaction with these lenses on a scale of 1-10, with 1 representing complete dissatisfaction and 10 representing complete satisfaction: _______

4.) Please check one choice for each of the following areas of lens performance:

<table>
<thead>
<tr>
<th></th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Variable Working Distance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B) Field of View</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C) Glare/Reflections</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D) Vision (Distortion/Clarity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E) Other:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.) Please indicate any visual symptoms that you noticed with these lenses:

<table>
<thead>
<tr>
<th></th>
<th>Increased</th>
<th>Decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) Blurred Vision</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B) Eyestrain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C) Other:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix C (cont.)

6.) Please indicate any physical symptoms that you noticed with these lenses:

<table>
<thead>
<tr>
<th></th>
<th>Increased</th>
<th>Decreased</th>
</tr>
</thead>
<tbody>
<tr>
<td>A)</td>
<td>Headaches</td>
<td></td>
</tr>
<tr>
<td>B)</td>
<td>Neck Pain</td>
<td></td>
</tr>
<tr>
<td>C)</td>
<td>Back Pain</td>
<td></td>
</tr>
<tr>
<td>D)</td>
<td>Other:</td>
<td></td>
</tr>
</tbody>
</table>

7.) How do you feel that working with these lenses has affected your work related stress? (please check one)

[] 1.) Increase greatly
[] 2.) Increase slightly
[] 3.) not affected
[] 4.) decreased slightly
[] 5.) decreased greatly
[] 6.) have difficulty assessing.

8.) How do you feel that using these lenses has affected your work efficiency? (please check one)

[] 1.) Increase greatly
[] 2.) Increase slightly
[] 3.) not affected
[] 4.) decreased slightly
[] 5.) decreased greatly
[] 6.) have difficulty assessing.

9.) How do you feel that using these lenses has affected your work related fatigue? (please check one)

[] 1.) Increase greatly
[] 2.) Increase slightly
[] 3.) not affected
[] 4.) decreased slightly
[] 5.) decreased greatly
[] 6.) have difficulty assessing.

Comments:

APPENDIX D

Comparative Experience Survey

Name: ____________________________ Pt.#: _________ Date ____________

1.) Please note any general observations you made when comparing the two lens designs:

__

2.) Can you identify any situations in which you found one lens or the other superior? If so, which one, and in what way?

__

3.) With which lenses did you:

A) Experience less fatigue
B) Experience fewer visual symptoms
C) Experience fewer physical symptoms
D) Experience less work related stress
E) Work more efficiently
F) Experience more overall comfort

4.) Considering all the factors, the statement I most agree with is: (please check one)

1.) I strongly prefer the new lenses
2.) I prefer the new lenses
3.) I have no preference, I like both lenses equally
4.) I prefer my previous lenses
5.) I strongly prefer my previous lenses
6.) have difficulty assessing.

5.) Which pair of lenses do you plan to wear at work in the future?

______ Technica® lenses ______ Previous ______ Both

6.) Did you find the Technica® lenses useful in any other situations? If yes, please explain:

__

Comments:

__

D1
APPENDIX E

Follow-up Evaluation

Name: ___________________ Pt.#: _________ Date _________

1.) Which lenses did you use at work?
(Please circle your answer) Technica® Old Lenses Both

2.) Please respond to each statement using the following scale:
1 = strongly agree
2 = agree
3 = no difference
4 = disagree
5 = strongly disagree

(If you circled "both" above, please specify which lens or both for each question)

A) My eyeglass lenses make my job easier to perform: ________ (lens: __________
B) My eyeglass lenses allow me to see my entire work area clearly: ________ (lens: __________)
C) My eyeglass lenses allow me to work more efficiently: ________ (lens: __________)
D) My eyeglass lenses help me to feel less tired at the end of the day: ________ (lens: __________)
E) My eyeglass lenses have helped to reduce physical discomfort (headaches, neck pain, back pain, etc.): ________ (lens: __________)
F) When I get a new pair of glasses, I would like to get the same eyeglass lenses that I am wearing now: ________ (lens: __________)

Comments:

__

__

★ U.S. GOVERNMENT PRINTING OFFICE: 1997 - 599-079/4883