NATIONAL TRANSPORTATION SAFETY BOARD

AIRCRAFT INCIDENT REPORT

USAIR FLIGHT 105
BOEING 737-200, N283AU
KANSAS CITY INTERNATIONAL AIRPORT, MISSOURI
SEPTEMBER 8, 1989
The National Transportation Safety Board is an independent Federal agency dedicated to promoting aviation, railroad, highway, marine, pipeline, and hazardous materials safety. Established in 1967, the agency is mandated by the Independent Safety Board Act of 1974 to investigate transportation accidents, determine the probable cause of accidents, issue safety recommendations, study transportation safety issues, and evaluate the safety effectiveness of government agencies involved in transportation.

The Safety Board makes public its actions and decisions through accident reports, safety studies, special investigation reports, safety recommendations, and statistical reviews. Copies of these documents may be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. Details on available publications may be obtained by contacting:

National Transportation Safety Board
Public Inquiries Section, RE-52
800 Independence Avenue, S.W.
Washington, D.C. 20594
(202)382-6735
This report explains the premature descent below minimum descent altitude of USAir flight 105 on approach to Kansas City International Airport, Missouri, on September 8, 1989. The aircraft struck and severed four electronic transmission cables, located about 75 feet above the ground, approximately 7,000 feet east of the runway threshold. The safety issues discussed in the report are identification of potentially confusing features near runways on instrument approach charts; FAA oversight of air traffic control quality assurance; FAA training of and guidance to operations inspectors; application of visual descent points to training in and execution of nonprecision instrument approaches, and incorporation of requirements for visual descent points in FAR Part 135 operations; communications of weather information between air traffic control and the National Weather Service; and revision of minimum safe altitude warning inhibit areas. Safety Recommendations addressing these issues were made to the FAA and the National Weather Service.
CONTENTS

EXECUTIVE SUMMARY .. v

1. FACTUAL INFORMATION
 1.1 History of the Flight ... 1
 1.2 Injuries to Persons .. 6
 1.3 Damage to Airplane .. 6
 1.4 Other Damage ... 6
 1.5 Personnel Information .. 6
 1.6 Airplane Information .. 7
 1.7 Meteorological Information ... 7
 1.7.1 Weather Data .. 7
 1.7.2 Dissemination of Weather Information 9
 1.8 Aids to Navigation .. 10
 1.9 Communications ... 10
 1.10 Aerodrome Information .. 10
 1.11 Flight Recorders ... 11
 1.12 Wreckage and Impact Information 11
 1.13 Medical and Pathological Information 11
 1.14 Fire ... 11
 1.15 Survival Aspects .. 11
 1.16 Tests and Research ... 12
 1.16.1 Meteorological Tests ... 12
 1.16.2 Overflight of Approach .. 12
 1.17 Additional Information .. 13
 1.17.1 Flight Path .. 13
 1.17.2 ATC Procedures and Requirements 13
 1.17.3 Air Traffic Controller Actions 20
 1.17.4 Air Traffic Controller Interviews 20
 1.17.5 Nonprecision Approaches, Approach Charts, and Visual Descent Point .. 24
 1.17.6 USAir Procedures and Requirements 26
 1.17.7 Pilot Interviews ... 28
 1.17.8 FAA En Route Inspections .. 31
 1.17.9 FAA Inspector Interview .. 32
 1.17.10 FAA Oversight of USAir .. 33

2. ANALYSIS
 2.1 General ... 34
 2.2 Weather .. 35
 2.3 Flightcrew ... 35
 2.4 Controllers .. 40
 2.5 Oversight of Air Traffic Controller Performance 44
 2.6 FAA Inspector ... 47
 2.7 Visual Descent Point .. 48
 2.8 Recording and Disseminating of Weather Information 49
 2.9 Minimum Safe Altitude Warning (MSAW) 49
 2.10 Cockpit Recording ... 50
 2.11 USAir Training and Procedures ... 51
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>CONCLUSIONS</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Findings</td>
<td>52</td>
</tr>
<tr>
<td>3.2</td>
<td>Probable Cause</td>
<td>53</td>
</tr>
<tr>
<td>4.</td>
<td>RECOMMENDATIONS</td>
<td>54</td>
</tr>
<tr>
<td>5.</td>
<td>APPENDIXES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Appendix A--Investigation and Hearing</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Appendix B--Air Traffic Control Transcript</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Appendix C--Personnel Information</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Appendix D--Airplane Information</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Appendix E--Barograph Data</td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>Appendix F--Data of Digital Flight Recorder of USAir 105</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>Appendix G--Statement of FAA Inspector and En Route Inspection Form</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td>Appendix H--External Visual Capabilities From Boeing 737 Cockpit Observer’s Seat</td>
<td>189</td>
</tr>
</tbody>
</table>
On September 8, 1989, N283AU, a Boeing 737-200 operated as USAir flight 105 was a regularly scheduled revenue passenger flight conducted under 14 Code of Federal Regulations Part 121 from Pittsburgh, Pennsylvania, to Wichita, Kansas, with an en route stop in Kansas City, Missouri. Fifty-eight passengers, two flight crewmembers and four flight attendants were onboard. A Federal Aviation Administration inspector who was performing an en route inspection occupied the cockpit observer's seat. The flight from Pittsburgh to the Kansas City area was uneventful.

The captain was the pilot flying and the first officer was performing the communications with air traffic control. USAir 105 was cleared to execute the localizer back course approach to runway 27 at 2129:41. At 2134:23, the local controller told USAir 105 "I can't tell for sure but it appears we have lost the lighting on the south side of the airport." The flight crew later described seeing a bright flash about this time. Subsequent inspection revealed that the airplane struck and severed four electronic transmission cables, located about 75 feet above the ground, approximately 7,000 feet east of the runway 27 threshold. The flight crew executed a missed approach and landed uneventfully in Salina, Kansas. None of the passengers or crew was injured, but the airplane sustained minor damage in the incident.

The National Transportation Safety Board determines that the probable cause of this incident was the flight crew's failure to adequately prepare for and execute a nonprecision approach and their subsequent premature descent below minimum descent altitude. Contributing to the cause of the incident was the inadequate and deficient services provided to the flight crew by air traffic control personnel.

The safety issues raised in this report include:

0 Identification of potentially confusing features near runways on instrument approach charts.
0 FAA oversight of air traffic control quality assurance.
0 FAA training of and guidance to operations' inspectors.
0 Application of visual descent points to training in and execution of nonprecision instrument approaches, and incorporation of requirements for visual descent points in FAR Part 135 operations.
0 Communication of weather information between air traffic control and the National Weather Service.
0 Revision of minimum safe altitude warning inhibit areas.
Recommendations concerning these issues were addressed to the FAA and the National Weather Service.
1. FACTUAL INFORMATION

1.1 History of the Flight

On September 8, 1989, N283AU, a Boeing 737-200 operated as USAir flight 105 (USAir 105), was a regularly scheduled revenue passenger flight conducted under 14 Code of Federal Regulations (CFR) Part 121 from Pittsburgh, Pennsylvania, to Wichita, Kansas, with an en route stop in Kansas City, Missouri (MCI). Fifty-eight passengers, two flight crewmembers, and four flight attendants were onboard. A Federal Aviation Administration (FAA) inspector, who was performing an en route inspection, occupied the cockpit observer's seat. The flight from Pittsburgh to the MCI area was uneventful. The airplane was dispatched with one component inoperative, the first officer's radio altimeter, under its approved minimum equipment list.

The captain was flying the airplane and the first officer was performing such duties as communicating with air traffic control (ATC). The first officer made initial contact with MCI east arrival approach control at 2121:20 ZDT, when the airplane was about 45 miles northeast of the airport. He indicated that they had received Automatic Terminal Information Service (ATIS) information "Romeo." The MCI east arrival controller told the flightcrew to plan for a visual approach to runway 19.

Information Romeo stated:

Kansas City International information Romeo. Zero one five zero zulu, two thousand five hundred scattered, measured ceiling seven thousand five hundred overcast; visibility one zero; temperature seven one; wind estimated at one zero degrees at one one; the altimeter two niner seven four. Remarks, frequent lightning northeast through east, occasional lightning west. Simultaneous I-L-S runway one niner and I-L-S runway niner approaches in use. Notice to airmen, convective SIGMET (significant meteorological information) one Charlie is in effect for Iowa Missouri Nebraska and Kansas. Concerns an area of severe thunderstorms with tops above flight level four five zero. Taxiway alpha one closed. Departing aircraft expect alpha two departure. Taxiway delta five and delta six closed. Taxiway delta centerline displaced fifty feet north of original centerline from four hundred feet west of taxiway delta four to west of taxiway delta six. Advise on initial contact you have romeo.
At 2127:34, the east handoff controller told the tower that the National Weather (NWS) was reporting winds that were favoring the use of runway 27. The cab coordinator was informed at 2128:55 that the winds were from the west at 24 knots, gusting to 39 (see appendix 8). He approved operations on runway 27 at 2129:01. At 2129:22 the crew of USAir 105, after asking the east arrival controller "how does it look for us," agreed to accept the localizer back course approach to runway 27. The airplane was at an approximate altitude of 6,500 feet msl and about 14 miles from the runway at that time. The east arrival controller cleared the flight for the approach at 2129:41 when the airplane was 5 miles from the Mizzo intersection of the localizer back course approach (see figures 1 and 2). USAir 105 was descending through approximately 5,000 feet msl at that time. (See section 1.17.1, Flight Path, and figures 3 and 4.)

During this general timeframe, several aircraft were on approach to MCI's runway 19. The local controller instructed a Midway Airlines flight to go around at 2124:56 after he was unable to determine, because of the heavy rain, whether the previous flight, Braniff 659, had cleared the runway. Shortly thereafter, the Braniff flight crew informed the local controller that they had encountered a "dramatic" wind shift at 200 to 300 feet, which had been out of the west. This pilot report (PIREP) was neither disseminated within the MCI ATC facility nor was it communicated to pilots of other aircraft in the MCI airspace. The local controller then remarked to the Braniff crew that he believed that the rain at that time was "the hardest I've ever seen it rain." At 2126:39, a military C-12 aircraft, call sign PAT 130, executed a go around after its crew lost sight of the runway. Its crew informed the east arrival controller at 2127:38, "that wall of water just covered the airport down there, we, it's not visible any more."

At 2130:55, because of storm activity in the area of the published missed approach course and in response to a request from the crew, the east arrival controller gave USAir 105 alternate missed approach instructions for the localizer back course approach to runway 27. Ten seconds later, the controller told the flight to contact the tower. At 2131:13, USAir 105 contacted the tower and, in response, the local controller cleared the flight to land and added "the wind is estimated two six zero at two four gusts three nine but [it] does appear that the wind is dying down a little bit."

2 The Airman's Information Manual in effect at the time of the incident defined a localizer as an electronic signal broadcast on one of 40 instrument landing system radio frequency channels which provides the pilot with lateral course guidance to the runway centerline. The approach course of the localizer is called the front course and is used with other functional parts, e.g., glide slope, marker beacons, etc. The course line along the extended centerline of a runway, in the opposite direction to the front course is called the back course. The localizer back course approach to MCI's runway 27 was a nonprecision approach and as such did not provide precise electronic vertical flight path guidance.
Figure 1. -- Localizer back course approach to MCI's runway 27. Copyright, Jeppesen Sanderson, Inc. reprinted with permission.
GENERAL:

- Caution: Bird in vicinity of airport.
- For STARs: Kansas City, Mo (Downtown).
- Low-level wind shear alert system.

ADDITIONAL RUNWAY INFORMATION:

<table>
<thead>
<tr>
<th>RUNWAY</th>
<th>TAKE-OFF WIDTH</th>
<th>LANDING BEYOND</th>
<th>TAKE-OFF</th>
<th>WIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>05L</td>
<td>150'</td>
<td>96'</td>
<td>185'</td>
<td></td>
</tr>
<tr>
<td>05R</td>
<td>150'</td>
<td>96'</td>
<td>185'</td>
<td></td>
</tr>
</tbody>
</table>

- **ADDITIONAL RUNWAY INFORMATION:**
 - **TIE-ZONES:**
 - 05L: 150' Width
 - 05R: 150' Width

Figure 2. Approach chart of additional runway information for MCL.

Copyright, Jeppesen Sanderson, Inc. reprinted with permission.
At 2131:43, the MCI east arrival approach controller transmitted the following message: "All aircraft on this frequency, the visibility at [Kansas City] International Airport is 1/2 mile with rain." The flightcrew of USAir 105 had just changed the communication frequency to that of the MCI local controller and, as a result, did not receive this report. The localizer back course approach called for a least 1 mile visibility before flightcrews could execute this approach. Just after the east arrival controller's report, the crew of Midway flight 225 told the controller that they could not execute the approach with 1/2 mile visibility. Within about 1 minute, the flight crews of two other aircraft also informed the controller that they would be unable to execute the approach because of the visibility.

At 2132:45, the local controller asked the flight crew of USAir 105 to inform him when they saw the runway. He also told the flight crew that he was increasing the intensity of the runway lights. At that time, USAir 105 was about 3 miles from the runway 27 threshold, at an approximate altitude of 1,900 feet msl.

At 2134:23, the local controller told USAir 105 "I can't tell for sure, but it appears we have lost the lighting on the south side of the airport." The flight crew later described seeing a bright flash about that time. At 2135:36, the flight crew of USAir 105 asked the local controller for vectors or headings "out of all this [adverse weather]" and informed the controller that they were executing a missed approach. At 2137:09, after establishing radio contact with the east arrival controller, USAir 105 declared "we lost hydraulics A and B we've got an emergency situation."

After determining the weather at nearby airports, the flight crew of USAir 105 requested vectors to Salina, Kansas. Although Wichita was the scheduled termination point of the flight, visibility at Wichita was below the minimum distance required for the initiation of an instrument approach. The flight diverted to Salina and landed at 2239 without further incident. None of the passengers or crew was injured.

Subsequent inspection of the area near the airport revealed that 4 of a group of 11 electrical transmission cables, located 7,270 feet east of the runway 27 threshold on a north-south orientation, had been severed by USAir 105. The highest cable, a static line with no current, was located at an approximate altitude of 1,100 feet msl, about 75 feet above the ground. The next lower cable, a transmission line that supplied 161,000 volts, was about 18 feet lower, and the middle and lower transmission lines were lower still by about 4 and 11 feet, respectively. The lines were near an automobile storage facility that was brightly illuminated with mercury vapor

3 FAR 121.651 (b) states, in part: No pilot may continue an approach past the final approach fix unless the latest weather report for that airport reports the visibility to be equal to or more than the visibility minimums prescribed for that procedure.

4 Subsequent inspection revealed that hydraulic system A was undamaged. See section 1.12, Wreckage and Impact Information, for more details.
lights (see figure 3). The severed cables transmitted electrical power to the terminal lights at MCI, as well as the taxiway lights on the south side of the airport.

1.2 Injuries to Persons
There were no injuries to the passengers or crewmembers.

1.3 Damage to Airplane
The airplane sustained minor damage. USAir reported that the cost of repairing the airplane was $272,205.

1.4 Other Damage
Damage on the ground was limited to the four electric utility cables described previously.

1.5 Personnel Information
The captain, age 40, received a type rating in the Boeing 737 on April 1, 1986, and completed his initial operating experience as captain on the airplane on April 10, 1986. At the time of the incident, he had accrued about 14,300 hours of flight time, of which about 2,000 hours were in the Boeing 737, as captain. (See appendix C).

The first officer, age 38, completed his training on the Boeing 737 on September 17, 1986. At the time of the incident, he had accrued an estimated 7,500 hours of flight time, about 2,300 of which were in Boeing 737.

From July 1989 to the night of the incident the captain had operated four flights into MCI, including one each on September 1 and 2, 1989. The first officer had not flown into MCI as a USAir flight crewmember and could not remember whether he had done so before joining USAir.

Five air traffic controllers provided or supervised the providing of ATC services to USAir 105 upon its arrival into the MCI airspace. All were full-performance-level controllers and facility rated at MCI. The east arrival radar controller, age 39, became facility rated at MCI on March 24, 1976. The terminal radar approach control (TRACON) area supervisor, age 52, acting as west arrival radar controller at the time of the incident became facility rated at MCI on December 9, 1982. The local controller, age 46, became facility rated at MCI on October 19, 1973. The cab coordinator and controller-in-charge of the MCI tower, age 31, became facility rated at MCI on August 22, 1989. The flight data/clearance delivery controller, age 31, became facility rated on May 31, 1989.

The FAA inspector who occupied the cockpit observer's seat on USAir 105 had been an inspector with the FAA for about 1 year. Before that time, he had been an airline pilot. At the time of the incident, he was the FAA's aircrew program manager of USAir's Boeing 767 program.
1.6 Airplane Information

The airplane, registration No. N283AU, was a Boeing 737-200A, equipped with two Pratt & Whitney JT8D-15 engines, each delivering about 15,500 pounds of thrust. The airplane was manufactured on December 19, 1983, and delivered to USAir on December 22, 1983. USAir operated the airplane continuously since that date. (See appendix D).

1.7 Meteorological Information

1.7.1 Weather Data

The September 8, 1989, 1900 surface weather map, prepared by the NWS, showed a weak low pressure system over extreme northern Lake Michigan with a stationary front extending south, then southwest through lower Michigan, Iowa, the extreme southeast corner of Nebraska into central Kansas, turning east through extreme southwestern Kansas. One instability line was oriented northeast-southwest through eastern Kansas and extreme northwestern Missouri, just northwest of Kansas City. Another was oriented east-west from east-central Kansas, through central Missouri, turning northeast through Illinois. In the Kansas City area, light southwesterly winds, broken sky cover, and scattered thunderstorms were present.

On the 2200 surface weather map, the northeast-southwest instability line moved southeast past Kansas City, and the stationary front had begun to approach Kansas City from the northwest. MCI weather conditions showed generally low overcast skies with gusty westerly winds and thunderstorms with rain showers.

The following surface observations were taken at MCI about the time of the incident:

Time--2050; type--record special; clouds--Z, 500 feet scattered, ceiling--measured 7,500 overcast; visibility--10 miles; weather--none; temperature--71°F; dew point--69°F; wind 110 degrees 11 knots; altimeter--29.74 inches; remarks--thunderstorm ended 2048 moved northeast, frequent lightning in cloud north through east, occasional lightning in cloud west, rain ended 2038.

Time--2127; type--special; ceiling--indefinite 500 feet obscured; visibility--1/2 mile; weather--thunderstorm with heavy rain showers; wind--250 degrees 22 knots gusting to 38 knots; altimeter--29.83 inches; remarks--runway 19 visual range 2,400 feet variable 6,000 feet plus, thunderstorm began 2125 all quadrants moving northeast, occasional lightning in cloud, cloud to cloud and cloud to ground.

Time--2150; type--record special; ceiling--measured 2,500 feet overcast, visibility--1 1/2 miles; weather--thunderstorm with moderate rain showers; temperature--66°F; dewpoint--65°F; wind--260 degrees 12 knots gusting to 22 knots; altimeter--
29.81 inches; remarks—thunderstorm began 2125 north through east moving northeast, occasional lightning in cloud and cloud to cloud, peak wind 270 degrees 38 knots at 2125, pressure rising rapidly, rain began 2124.

The NWS recorded the following winds (wind speed only was recorded) at MCI, using its wind recording device located near departure end of runway 1, for the following approximate time intervals:

<table>
<thead>
<tr>
<th>Time</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100-2118</td>
<td>varied between 9 and 14 knots</td>
</tr>
<tr>
<td>2118-2123</td>
<td>decreased to 8 knots</td>
</tr>
<tr>
<td>2123-2125</td>
<td>gusted to 38 knots</td>
</tr>
<tr>
<td>2125-2127</td>
<td>varied between 22 to 36 knots</td>
</tr>
<tr>
<td>2127-2129</td>
<td>decreased rapidly to 16 knots</td>
</tr>
<tr>
<td>2129-2139</td>
<td>decreased slowly to 10 knots</td>
</tr>
<tr>
<td>2139-2140</td>
<td>gusted to 17 knots, dropped to 12 knots</td>
</tr>
<tr>
<td>2140-2145</td>
<td>gusted to 22 knots, dropped to 14 knots</td>
</tr>
</tbody>
</table>

At 1836, the NWS measured the winds aloft at the following altitudes at its Topeka, Kansas, station:

<table>
<thead>
<tr>
<th>Altitude (msl)</th>
<th>Direction (degrees true)</th>
<th>Speed (knots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>879 (surface)</td>
<td>100</td>
<td>08</td>
</tr>
<tr>
<td>1,762</td>
<td>124</td>
<td>16</td>
</tr>
<tr>
<td>2,513</td>
<td>159</td>
<td>24</td>
</tr>
<tr>
<td>3,177</td>
<td>178</td>
<td>38</td>
</tr>
<tr>
<td>3,926</td>
<td>191</td>
<td>42</td>
</tr>
<tr>
<td>4,907</td>
<td>202</td>
<td>39</td>
</tr>
<tr>
<td>6,048</td>
<td>207</td>
<td>38</td>
</tr>
</tbody>
</table>

The MCI transmissometer, located at the approach end of runway 19, recorded the runway visual range (RVR) for runway 19. The following RVRs were interpreted from the transmissometer recordings of the night of the incident:

<table>
<thead>
<tr>
<th>Time</th>
<th>RVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100-2123</td>
<td>greater than 6,000 feet</td>
</tr>
<tr>
<td>2124-2125</td>
<td>decreased to 2,300 feet</td>
</tr>
<tr>
<td>2126-2132</td>
<td>increased to greater than 6,000 feet</td>
</tr>
<tr>
<td>2132-2133</td>
<td>decreased to 5,000 feet</td>
</tr>
<tr>
<td>2133-2134</td>
<td>increased to greater than 6,000 feet</td>
</tr>
<tr>
<td>2134-2200</td>
<td>greater than 6,000 feet</td>
</tr>
</tbody>
</table>

The NWS barograph at MCI recorded the following barometric pressures on the day of the incident. (See appendix E). The times are approximate; the pressures are in inches of mercury:
| Time | Pressure Change
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1300-2110</td>
<td>28.78 - 28.64</td>
</tr>
<tr>
<td>2110-2120</td>
<td>28.64 - 28.75</td>
</tr>
<tr>
<td>2120-2130</td>
<td>28.75 - 28.70</td>
</tr>
<tr>
<td>2130-2230</td>
<td>28.70 - 28.74</td>
</tr>
</tbody>
</table>

In a 2125 observation from its weather radar at MCI, the NWS noted that the airport was within an area of 6/10 coverage of thunderstorms with rain showers reaching level 5. The thunderstorm cells were moving from 250° at 25 knots. Thunderstorms with level 4 rain showers were in an approximate 22-mile square-sided grid encompassing MCI. The 2130 overlay from the radar showed a north-south oriented line of thunderstorms reaching level 4 about 10 miles west of MCI.

At 1855 on the night of the incident, the NWS's Severe Storms Forecast Center in Kansas City issued the following convective SIGMETs (significant meteorological information). SIGMET 66C, which was valid through 2055, stated:

30 miles west of Kansas City, MO. Isolated severe thunderstorm, diameter 30 miles moving from 270 degrees 20 knots. Tops to 45,000 feet. Hail to 1 inch. Wind gusts to 50 knots possible.

SIGMET 1C was issued at 1955 on the day of the incident and was valid through 2155. It stated:

From 30 miles east of Omaha, NE, to 20 miles north of Kansas City, MO, to 30 miles southeast of Salina, KS, to 90 miles north-northwest of Salina, KS, to 30 miles east of Omaha, NE. Area of severe thunderstorms moving from 270 degrees 25 knots. Tops above 45,000 feet. Hail to 3 inches. Wind gusts to 65 knots possible.

1.7.2 Dissemination of Weather Information

The NWS observer on duty at MCI at the time of the incident told the Safety Board that he typically transmitted weather observations to the MCI control tower on the NOTAM (notice to airmen) and NADDS (data distribution system). The NADDS was a computerized data dissemination system that the FAA used at MCI to communicate flight safety and administrative data. According to the NWS weather observer, the NADDS was out of service when the 2127 observation was taken. As a result, he

5 NWS assigns 1 of 6 intensity levels to thunderstorms based on their precipitation rates: level 1 is light, 2 is moderate, 3 is heavy, 4 is very heavy, 5 is intense, and 6 is extreme.
estimated that he gave the observation data to the control tower at 2128 using the unrecorded telephone line in the MCI tower.6

MCI ATC personnel told the Safety Board that the NADDS was in service and that they had received the 2127 observation data through the NADDS but they could not recall the time. The NADDS was unrecorded and no other mechanism was present at MCI to record either the transmission or the receipt of weather information exchanged between the NWS and ATC facilities at MCI.

1.8 Aids to Navigation

The lights associated with MCI’s runway 27 were operating normally at the time of the incident. The localizer and distance measuring equipment (DME) were operating at the time of the incident. After the incident, the runway 27 visual approach slope indicator (VASI) and the MCI taxiway lights were out of service.

After the incident, the FAA conducted a flight inspection of the runway 27 localizer. It was found to be operating within normal limits.

1.9 Communications

There were no difficulties reported in communications within the MCI ATC facility and between the MCI ATC facility and aircraft on the night of the incident.

1.10 Aerodrome Information

Kansas City International Airport, certificated under 14 CFR Part 139, is 15 miles northwest of the city at coordinates 39° 07’ N and 94° 45’ W. The airport elevation is 1,026 feet msl. It has two major runways that do not intersect, arranged in an “L” shape. Runway 1-19, the principal instrument runway with Category II and III approval, is 10,801 feet long and 150 feet wide. Runway 9-27 is 9,500 feet long and, 150 feet wide.

At the time of the incident, runway 27 was equipped with runway end identifier lights (REIL), high intensity runway lights (HIRL) with centerline lights (CL), and a 2-bar VASI on the left side of the runway. The VASI provided a 30° glide path with a threshold crossing height of 58 feet above ground level (agl).

Two nonprecision instrument approaches were available to runway 27: a localizer back course and a very high frequency omni directional range (VOR). The localizer back course approach incorporated step-down levels at

6 All communications between aircraft and air traffic control, and most communications among air traffic controllers through electronic transmission methods were recorded. ATC transmissions and recorded conversations that occurred around the time of the incident were transcribed (see appendix G).
various points demarcated by DME distances and a visual descent point (VDP) (see section 1.17.5).

The MCI TRACON provided ATC services in the airspace that extended about 30 miles around the airport, including an approximate 15 mile extension to the south. That airspace ranged from the surface to 15,000 feet msl.

1.11 Flight Recorders

The airplane was equipped with a cockpit voice recorder (CVR) that recorded cockpit area sounds on a continuous 30-minute tape. However, because USAir 105 continued to fly more than 30 minutes after executing the missed approach at MCI, no CVR information pertinent to the incident was available.

The airplane was equipped with a Sundstrand Data Control digital flight data recorder (DFDR) that recorded the following data in digital format, on a continuous 25-hour tape: altitude, airspeed, heading, vertical acceleration, and microphone keying. The recorder was read out at the Safety Board's laboratory in Washington, DC.

The DFDR showed that at 2133:25 USAir 105 had reached its lowest altitude of 1,076 feet msl and its lowest airspeed of 131 knots, while maintaining a heading of about 283°. Within 1 minute, USAir 105 had climbed to about 3,200 feet msl and had reached an airspeed of about 160 knots during the initial portions of the missed approach. (See appendix F).

1.12 Wreckage and Impact Information

The main and nose gear doors were torn off. The left main gear shimmy dampener was missing. An approximate 12-inch cut was found in the vertical stabilizer, extending from the leading edge to the forward spar. Hydraulic system B sustained a breach to a hydraulic line in the nose gear area. The right side fuselage, just in front of and slightly above the right wing, sustained a 12-to-16-inch gouge. The underside of the right engine cowling was creased.

1.13 Medical and Pathological Information

There were no injuries to passengers, crewmembers, or persons on the ground.

1.14 Fire

There was no fire.

1.15 Survival Aspects

The incident was fully survivable.
1.16 Tests and Research

1.16.1 Meteorological Tests

At the time of the incident, the FAA was conducting an evaluation at MCI of a Terminal Doppler Weather Radar (TDWR), a sophisticated radar capable of detecting variations in wind direction and speed measured radially from the antenna, located about 8 miles southwest of MCI. The TDWR could also measure the intensity of precipitation. The experiment was conducted jointly at MCI by the NWS Severe Storms Laboratory, the University of North Dakota, and the National Center for Atmospheric Research. The TDWR was not operating between 2132 and 2138. In addition to the TDWR, throughout the night of the incident the FAA was operating an S-band doppler weather radar and a surface mesonet.

Data from the FAA's weather radar facility near MCI were recorded around the time of the incident and, with TDWR data, subjected to the following interpretations regarding MCI weather about the time of the incident. At 2127:25, the leading edge of an easterly moving gust front was 2 miles east of the approach end of runway 27. The highest winds were at 39 knots between the approach end of runway 27 and the leading edge of the gust front. Level 2 thunderstorms were present with small embedded areas of level 5 thunderstorms. The heaviest precipitation was found in a band about 5 1/2 miles long extending north from the departure end of runway 27.

The highest wind speed, 40 knots, was measured at 2128, about 1/2 mile east of the approach end of runway 27. The wind speed decreased to 29 knots at the departure end of the runway.

At 2131:20, the leading edge of the gust front was slightly more than 4 miles east of the approach end of runway 27. Wind speeds of 39 knots were observed there. Between the leading edge and 1 1/2 miles east, wind speeds of 31 knots or more were observed. Between the approach end of runway 27 and 11/2 miles east, wind speeds as high as 23 knots were observed. At that time, winds up to 16 knots were observed over runway 27.

According to mesonet data, at 2133, the winds about 1 mile east of the approach end of runway 27 were from the west at 20 knots; over the center and the departure end of the runway, the winds were from the west at 10 to 15 knots and 10 knots, respectively. Precipitation was falling at a rate of 3 1/2 inches per hour in a northeast-southwest-oriented area over the western part of the airport. It was falling at a rate of 1.2 inches per hour over the approach end of runway 27.

1.16.2 Overflight of Approach

On May 7, 1990, an NTSB investigator flew over the localizer back course runway 27 approach in a Bell 206 helicopter. The purpose of the flight was to photograph and document the lights along the approach path. Night, visual meteorological conditions prevailed throughout that flight.
A photograph (figure 5) shows a line of about seven bright mercury vapor lights, slightly to the right, or north, of a centerline extended from runway 27. The power line was identified by the investigator as just east of the line of lights. The investigator stated that he had no difficulty distinguishing between the lights near the power lines and the lights associated with the runway.

1.17 Additional Information

1.17.1 Flight Path

Data from the ATC surveillance radar at MCI were used to determine the flight path and flight profile of USAir 105 (figures 3 and 4). The Safety Board compared these data to the airplane's DFDR data to confirm the flight path during the final minutes of USAir 105's approach to MCI.

At 2129:41, when the MCI east arrival approach controller cleared USAir 105 to execute the localizer back course approach to runway 27, the flight was 5 miles from Mizzo and descending through 5,200 feet msl. Twenty-two seconds later, the controller told the crew to turn left to a heading of 240° to intercept the localizer. The airplane leveled off for about 25 seconds at an approximate altitude of 2,400 feet msl. USAir 105 was abeam of Mizzo about 2130:53 when it was descending through about 3,500 feet msl at an airspeed of 156 KIAS.

USAir 105 reached 1,400 feet, the minimum descent altitude (MDA), about 2132:57. At that time, its descent rate slowed, and the airplane remained around the MDA for approximately 2 seconds. The airplane crossed the localizer around 2132:20 and flew on or intercepted the localizer about 2132:50, when it was about 2 1/2 miles from the runway threshold and about 3 1/2 miles inside Mizzo, at an approximate altitude of 1,600 feet msl. Figure 3 illustrates positions on the flight path that would have resulted in full localizer needle deflection on the appropriate flightcrew instruments, indicating substantial deviation from the localizer flight path. Full deflection would have occurred before 2132:10 and between about 2132:30 and 2132:40. From about 2132:50, when the airplane was established on the localizer, to the initiation of the missed approach the airplane's airspeed decreased steadily from about 150 KIAS to about 130 knots.

The airplane maintained an approximate 270° heading until 2133:09. It then began a turn to the north at an approximate rate of 1/2° per second for about 4 seconds. The rate of turn then increased to about 1- to 2-degrees per second until the wire strike.

1.17.2 ATC Procedures and Requirements

According to paragraph 2-2, handbook 7110.65E, the FAA's ATC procedures handbook in effect at the time of the incident, controllers are to prioritize their duties according to the importance of those duties at the time. Regardless, the first ATC priority was to separate aircraft and issue safety alerts as required. The handbook stated:
Good judgment shall be used in prioritizing all other provisions of this handbook based on the requirements of the situation at hand. Because there are many variables involved, it is virtually impossible to develop a standard list of duty priorities that would apply uniformly to every conceivable situation. . . . When more than one action is required, the controller shall exercise his best judgment based on the facts and circumstances known to him. That action which is most critical from a safety standpoint is performed first.

Paragraph 2-102 required controllers to solicit PIREPs on strong frontal activity, squall lines, thunderstorms, wind shear and other relevant "conditions pertinent to flight safety." They were to give the information to appropriate ATC facilities.

Paragraph 2-105 required controllers to perform visibility observations when the prevailing visibility at the tower was less than 4 miles and to give this visibility information to other controllers. In addition, controllers were required to "forward current weather changes to the appropriate control facility when the official weather changes to a condition which is below the 1,000-foot ceiling or below the highest circling minimum, whichever is greater, or less than 3 miles visibility."

Paragraph 2-106 required controllers to disseminate to pilots or other ATC facilities general information about the prevailing weather.

Paragraphs 5-120 and 5-121 required radar controllers, when the visibility was less than 3 miles, to vector aircraft to at least 2 miles outside the approach gate,7 with headings that will result in intercept angles no greater than 30°.

Paragraph 271 from the FAA's Facility Operation and Administration handbook 7210.31, required Facility Air Traffic managers to establish "a means by which the receipt of weather observations are immediately known to facility personnel responsible for dissemination of that information." The paragraph required the managers to establish procedures "for the prompt collection and dissemination of SIGMET, Center Weather Advisory (CWA), and PIREP information."

Paragraph 1222 of the handbook specified that, "during periods when wind shear is likely to occur or has been reported; e.g., frontal activity, thunderstorms, or pilot reports, inform users by broadcasting on the ATIS that the component [low-level windshear alert system (LLWAS)] is out of service."

7 The approach gate is a point that is one mile before the final approach fix, Mizzou on the runway 27 back course localizer approach at MCI.
Figure 3. -- Overhead view of flight path.
Figure 4. -- Profile view of flight path.
Figure 5. -- Overhead view of lights near threshold of runway 27.
1.17.3 Air Traffic Control Actions

At 2126:29, the local controller broadcast to aircraft on his frequency the RVR\(^8\) as 2,800 at midfield and 1,800 at the runway rollout area. The transcript of ATC communications indicates that the following portion of this transmission was received at the east arrival controller's position "for runway one nine touchdown two thousand eight hundred and ni dield two thousand."

At 2126:53, the east arrival controller asked the local controller, "What's going on, nobody's going to land?" The local controller responded, "No I (unintelligible) can't even see the edge of the tower [because of the] heavy rain." At 2127:28, the east arrival controller advised an aircraft, in response to a statement on the proximity of the adverse weather to MCI: "Affirmative I think it's right over the airport (unintelligible) had two missed approaches in the last 3 minutes."

Between 2125 and 2127, MCI NWS personnel, having become aware that adverse weather had just approached the airport, called the MCI ATC tower on an unrecorded telephone line to inquire about the current visibility. In response, the cab coordinator and the clearance delivery controller jointly determined that the prevailing visibility was \(1/2\) mile in rain. This information was disseminated within the MCI ATC facility in response to a request from the west handoff controller, at 2131:26, for the tower visibility.

At 2127:33, the east handoff controller informed the local controller that the winds at MCI favored the use of runway 27 and asked him to "have C - C [the cab coordinator] call us so we can coordinate (right away);" The cab coordinator gave his approval to the east handoff controller for operations at MCI's runway 27 at 2129:01. As noted, at least 1 mile visibility was required to execute the localizer back course approach to that runway.

The MCI TRACON, as in all 63 FAA automated radar terminal system (ARTS) 3A radar facilities, was equipped with minimum safe altitude warning (MSAW) software to alert an air traffic controller to an aircraft that has prematurely descended close to ground level. The MSAW alert did not activate during the incident involving USAir 105, despite the fact that the airplane was in the MSAW general terrain warning area, because the wire strike occurred within the inhibit area designed to minimize the number of false MSAW alerts to controllers.

1.17.4 Air Traffic Controller Interviews

Shortly after the incident, Safety Board investigators interviewed the air traffic controllers responsible for ATC handling of USAir 105, the flightcrew, and the FAA inspector who conducted the en route inspection on

\(^8\) The equipment for determining the RVR at MCI was on runway 19 and not on runway 27.
the flight. About 10 weeks after the incident, the Safety Board interviewed those individuals and the MCI ATC facility chief. A verbatim transcript of those interviews was made.

The MCI controllers uniformly told the Safety Board that the workload at the time of the incident was "light."

The East Arrival Controller. -- The east arrival controller said that she stopped issuing clearances for visual approaches to MCI's runway 19 because "visuals were not working." She changed the clearance of a Northwest Airlines aircraft from a visual to the ILS approach to runway 19 because "airplanes were coming back to me." She said that she did not receive any pilot reports. After she noticed that flights were executing missed approaches and she received information that the winds favored that runway, she changed the approaches to the localizer back course runway 27 approach.

As she was getting ready to vector or direct a Midway Airlines aircraft to turn to runway 27, about 2300, she noticed that the NADDs indicated that the visibility had deteriorated to 1/2 mile. The tower never called her to advise that the visibility had deteriorated to 1/2 mile.

She did not give other controllers, and she did not think that she had relayed to other aircraft, information on the 2207:38 statement by a flight crewmember of PAT 130, the military C-12, that their airplane had encountered a "wall of water" and that the airport was "not visible anymore." Although she would "normally" disseminate such information, she could not remember why she did not do so on the night of the incident.

She was aware that the local controller had told her that he couldn't see the edge of the tower. She interpreted this statement to mean, "There is rain. It was probably hard rain on one side of the tower or something." Such information would not have prompted her to inquire about the visibility because, as she explained, "Normally people would tell you. We have a half a mile, we have zero visibility, we have whatever." There was no reason to inquire about the visibility because, "my aircraft are seeing the airport. I mean, why would I think there would be bad visibility?" She did not advise the local controller that USAir 105 had not been informed of the prevailing 1/2 mile visibility because "He's already gone. I've got to get my aircraft--this information to my aircraft now."

She stated that under instrument conditions an aircraft on the runway 27 localizer back course approach would need to be established 1 mile outside the final approach fix (Mizzo in this approach). With regard to the radar track of USAir 105 (figure 3), she said, "I thought he was vectored correctly, he was a little off, so I gave him a heading to join." She stated that she believed the flight appeared to intercept the localizer, as required, outside of Mizzo.

The Local Controller. -- The local controller said that after one flight had executed a missed approach he asked the cab coordinator to obtain the current wind observation from the NWS. He told the east arrival controller that he couldn't see the edge of the tower because of the heavy
rain striking the windows of the cab. Although he transmitted the runway 19 RVR information, he could not recall if he told the cab coordinator or flight data/clearance delivery controller that a new visibility observation was necessary. "I was concerned" he stated:

"With the airplanes at that time. In other words, I have airplanes in the air and on the ground, and my primary concern was those airplanes. I was not concerned with whether I had a half mile or three-sixteenths or nine-twenty-eighths of a mile visibility. That's for the coordinator in the tower to do."

The local controller did not issue weather and visibility information to USAir 105, but he believed the flightcrew would have heard the weather and PIREPs that had been reported by other aircraft on the frequency. He knew that the visibility was 1/2 mile when USAir 105 executed the approach to runway 27 because the cab coordinator had informed him of the visibility. He also knew that he was required to transmit this information, or other data indicating significant changes in weather, but did not know why he did not do so. Further, he was aware of the assignment of responsibility for disseminating weather information to flightcrew. He stated:

if it was disseminated before he made the approach, then it should have been given by approach control before he cleared the approach and changed to the tower. If it was given after that, then I should have given it to him when I had it.

The Controller-In-Charge/Cab Coordinator.--The controller of the tower at the time of the incident had assigned himself to the position of cab coordinator before the incident. He said that when the front reached the airport, the NWS called the cab on an unrecorded line to determine the visibility. He explained that it took about 3 1/2 minutes after determining the reduced visibility to disseminate the information to the west handoff controller because:

I answered the phone a lot aside from coordinating on the missed approaches with [the] Midway [Airlines flight] and them and I don't remember when I gave the visibility, but I must have answered it 10, 15 times. Everybody calling whether or not the airplanes were at the end of the taxiway, whether or not they got off or the company operations. I assisted and I don't recall exactly when it happened, but I helped everybody out that needed it if they fell behind, and I assisted everybody out.

He said he knew that he was required to disseminate weather information as soon as significant changes took place. He ordinarily accomplished this by advising personnel in the tower and calling the TRACON area manager or supervisor.

The controller added that in the year that he had been in the MCI area, the weather on the night of the incident, was the "worst storm that I ever worked at Kansas City," because of the wind and the heavy rain.
The Clearance Delivery Controller.--The clearance delivery controller said that ordinarily, when she noticed new weather information on the NADDS, she would record a new ATIS message within 20 seconds. On the night of the incident, she transmitted on the ATIS a PIREP from another aircraft concerning severe turbulence.

She acknowledged that it was her responsibility to transmit on the ATIS that the LLWAS was out of service at MCI on the day of the incident. She acknowledged that she failed to relay this information because she "forgot."

The TRACON Area Supervisor.--Before the incident, the TRACON area supervisor was performing the duties of area manager because no area manager was on duty. In addition, he had assigned himself to the position of west arrival controller. He cancelled the "flex" shifts and retained two controllers to work overtime in order to accommodate flights that were expected to be delayed by the weather.

He noted that a line of adverse weather was approaching the airport from the west. He did not solicit PIREPs from pilots on this weather because "nobody was out there." He was not aware that missed approaches were being executed as a result of the reduced visibility.

The TRACON supervisor believed that the intercept angle of USAir 105 with the localizer looked good initially. That is, the flight would intercept the localizer 1 mile outside Mizzo, as required. However, when the east arrival controller issued the 240° heading to the flight, the intercept angle appeared to be "awfully tight." He said that, nevertheless, even if a flight had received a vector that would have put the aircraft inside Mizzo, a pilot would inform the controller of an unacceptable situation and would request another approach. However, he acknowledged that such a situation would not relieve the supervisor from correcting inappropriate controller actions.

He removed himself from the west arrival position after USAir 105 had executed the missed approach, because "things were happening [that were] out of the ordinary."

In commenting on possible improvements to procedures at MCI based on his review of the events of September 8, 1989, the supervisor said he did not know if he would modify procedures to improve the dissemination of weather information, both within the MCI facility and from the facility to aircraft in the airspace. "Unless somebody shows me the inadequacies [in MCI ATC weather dissemination] he added, "[don't know of the changes] to make in light of the information obtained from the incident.

The MCI ATC Facility Chief.--The chief of the MCI facility acknowledged that the flightcrew of USAir 105 had not been informed that the prevailing MCI visibility had deteriorated to less than 1/2 mile. However, he added that "in my review of it, it was pretty clear that the crew knew it was less than, well less than 10 miles, and probably well less than what it should have been for the approach."
He did not believe that a 3-minute interval from the observation of the 1/2 mile visibility to the dissemination of that information was "unreasonable." In describing the responsibilities of controllers to disseminate weather, among their other duties and responsibilities, he said:

Our first and foremost [responsibility] is to separate airplanes. I think weather [dissemination] falls about No. 6. And the reason that falls there is I think I've been told in testimony in court that the pilot is in the best seat in the house to make the decision on what the weather is to make the approach, regardless of what we tell him because the information we give him is normally old anyhow.

1.17.5 Nonprecision Approaches, Approach Charts, and Visual Descent Point

FAR 91.116(c) lists the criteria that must be met before a pilot is permitted to descend below the MDA. They include requirements that the prevailing visibility be "not less than the visibility prescribed in the standard instrument approach procedure being used" and that visual reference be established with at least one of the following types of runway markings, runway lights or approach light systems: runway threshold, threshold markings, threshold lights, REIL, VASI, touchdown zone or touchdown zone markings, touchdown zone lights, runway or runway markings or runway lights.

At the time of the incident, FAR 91.116(c)(4) was in effect. In addition to pilot confirmation of lights or markings associated with the runway, this regulation, with some exceptions, prohibited descent below an MDA until an aircraft had reached the visual descent point or (VDP). It stated that descent below MDA is prohibited unless:

When the aircraft is on a straight-in nonprecision approach procedure which incorporates a visual descent point, the aircraft has reached the visual descent point, except where the aircraft is not equipped for or capable of establishing that point or a descent to the runway cannot be made using normal procedures or rates of descent if descent is delayed until reaching that point.

FAR 121.651, which specified the requirements for takeoff and landing minimums in air transport operations, used the identical language as FAR 91.116(c)(3) and 91.116(c)(4) with reference to visual contact with lights or markings for descent below MDA and for adherence to VDP.

The Airman's Information Manual (AIM) contained the following with regard to VDPs:

Visual Descent Points are incorporated in selected nonprecision approach procedures. The VDP is a defined point on the final approach course of a nonprecision straight-in approach procedure from which normal descent from the MDA to the runway touchdown point may be commenced, provided visual reference required by FAR 91.116(c)(3) is established. The
VDP will normally be identified by DME on VOR and LOC (localizer) procedures. The VDP is identified on the profile view of the approach chart by the symbol: V (emphasis in original).

VDPs are intended to provide additional guidance where they are implemented. No special technique is required to fly a procedure with a VDP. The pilot should not descend below the MDA prior to reaching the VDP and acquiring the necessary visual reference in accordance with FAR 91.116(c)(3)(4).

The captain and first officer of USAir 105, as well as the FAA inspector who was performing an en route inspection of the flight, were unfamiliar with the requirement governing VDPs and descent below MDA. The captain and first officer could not remember performing approaches that incorporated VDPs in airplane simulators.

On August 18, 1989, the Federal Register published Part II of the FAA's final rule regarding revisions of its FAR Part 91 general operating and flight rules. The final rule included the following FAA statements pertaining to VDPs:

One commenter urges the FAA to reinsert the current rule regarding visual descent points (VDPs). [The FAA stated that] VDPs are not an integral part of the approach procedure. An aircraft that is not equipped to identify a VDP has the same approach minima as a similar aircraft that is equipped to identify the VDP.

Mandatory use of VDPs is considered inappropriate for a number of reasons:

(1) VDPs that use DME fixes may, because of displacement factors and/or fix errors, result in descent angles that are either too shallow or too steep for the approach.

(2) A mandatory VDP rule discourages the purchase and use of the very equipment necessary to identify the VDP. This is so because compliance can only be required of those aircraft that are equipped to identify the VDP.

For these reasons, the final rule, like the NPRM [Notice of Proposed Rulemaking], does not include a mandatory VDP requirement.

The FAA informed the Safety Board that although it planned to delete the VDP from FAR Part 91 operating rules, there was no plan to change

the pertinent part of FAR Part 121. In addition, the FAA stated[^10] that "The VDP is a point established on the final approach course which is intended to aid the pilot in determining when to begin a descent from the MDA to touchdown provided all other conditions in FAR Section 91.116(c) are met."

In a meeting on May 10, 1990, with a representative of the FAA, the Safety Board was informed that the VDP was designed to provide additional guidance to pilots to enhance stabilized descents during the execution of nonprecision approaches. The VDP is the point on a nonprecision approach that provides a 3-degree descent angle from the MDA to the runway touchdown zone. The VDP was made a mandatory part of the FARs in the early 1980s.

USAir supplied each captain and first officer with current Jeppesen-Sanderson instrument approach charts for airports that the company served and for other airports near those in the USAir route system. Approach charts to certain runways displayed warnings about possible confusion of lights near runways with lights associated with those runways. For example, charts for the ILS Runway 18L approach to Tampa, Florida's, Tampa International Airport contained the following warning on its profile view: "Caution: In minimum visibility conditions, reflections of bright lights on ground 1.4 NM north of rwy 18 threshold may be confused with airport lights." Similar warnings were contained in the approach charts to such air carrier airports as: Flint, Michigan; Pt. Meyers, Florida; Ithaca, New York; Nashville, Tennessee; and Philadelphia, Pennsylvania. All of them were served by USAir. No warning was printed on the approach chart for the localizer back course approach to runway 27 at MCI.

1.17.6 USAir Procedures and Requirements

USAir's Flight Operations Manual specified the company's pilot operating procedures. Approaches were to be executed in accordance with "Company policy and procedures, operations specifications, Federal Aviation Regulations, and the appropriate approach plates, which shall be checked by each flight crewmember before commencing approach." In addition, the Manual required flight crewmembers to review:

- field elevation, minimum descent altitude or decision height,
- headings, frequencies, missed approach procedures, etc.

Normally the pilot flying briefs the other flight crewmember on these pertinent items and on any special requirements and/or conditions. The other(s) should add or amend any significant information item(s) that may have been omitted or are erroneous.

Approach briefings were to include information from an applicable USAir Airport Advisory for the destination airport, pertinent climate information, final approach airspeed, and descent rate.

[^10]: Memo dated June 1, 1990, from the Manager, Air Transportation Division, AFS-200, to the Manager, Recommendation/Quality Assurance Division, AAI-200.
The manual referred to the VASI as "designed to provide, by visual reference, the same information that the glideslope unit of an ILS provides electronically." It explained the descent angle needed to remain on the glideslope, the manner in which the VASI would appear to flightcrews, standard installation of the VASI and operation of the system.

The manual required the nonflying pilot, the first officer in this incident, to note instruments that are flagged and, during instrument conditions, to monitor the airplane's altitude, airspeed, and sink rate. In addition, the nonflying pilot was required to call out "100 feet above min us" and "at min us" at the appropriate altitudes. The manual directed the non-flying pilot to:

- Observe outside conditions to the degree possible throughout the approach and, no later than 100 feet above the minimum altitude, shall be alert to spot and call approach, strobe, or other lights in sight, "Runway in sight," "No contact," or other pertinent information.

The manual paraphrased FARs 91.116 and 121.651 in listing appropriate runway lights and markings that pilots must visually confirm to permit descent below MDA. The manual used the identical language as the FARs in its section on VDPs.

When descending below MDA, it stated that:

Thereafter, any deviations of altitude, airspeed, heading, and/or rate of descent from normal should be called out. Such monitoring should continue to touchdown or through a missed approach. Pilots conducting instrument approaches utilize visual cues as they become available during the approach. At DH or MDA, the pilot may be satisfied that the total pattern of visual cues provide sufficient guidance to continue the approach and landing, and if not, a missed approach is executed. If the approach is continued, it is based on a "see to land" concept, and it is imperative that the required visual reference be continuously maintained. If visual cues are lost after DH or MDA, the pilot must execute the appropriate missed approach procedure.

The manual did not direct pilots to automatically go around during nonprecision approaches if the flight navigation displays showed full localizer deflection during the approach.

USAir's Boeing 737-200 Pilot's Handbook contained a chapter on training. It defined a stabilized approach as "stabilized airspeed, stabilized sink rate, and a constant profile." No reference was made regarding requirements for go-arounds if a pilot encountered localizer deflection inside the final approach fix on a nonprecision approach. Such guidance was given to pilots flying a precision approach. USAir's Director of Flight Training and Standards stated that a pilot failing to execute an immediate go-around when encountering full scale localizer deflection inside
the final approach fix on a nonprecision approach would be rated unsatisfactory on a proficiency check.

1.17.7 Pilot Interviews

The First Officer.--The first officer stated that the flight was uneventful until it arrived in the MCI area. The first officer heard a flight crewmember of the Midway Airlines flight inform ATC that they were executing a missed approach and he heard a crewmember of PAT 130 report that they had encountered a wall of water.

He said that after USAir 105 received ATIS information informing them to expect a visual approach to runway 19, he got out the "entire stack" of approach charts to MCI, reviewed the airport layout, then pulled out the ILS runway 19 chart. He briefed the captain on the approach, but this briefing did not include the airport or runway lighting configurations. He set the navigation radio frequencies to those of that approach. After the flight was given a heading to intercept the localizer for the runway 27 localizer back course approach, he removed the runway 27 approach chart from the "stack." He tuned and identified the radio frequencies appropriate for that approach. He briefed the captain on the second approach. However, he was unable to recall if the briefing included information on the runway lighting configuration. Neither he nor the captain realized that the vectors from MCI ATC would take them to the localizer course well inside of Mizzo.

He said that neither he nor the captain expected the weather to adversely affect their execution of the approach to runway 27 because the weather forecast for MCI had called for a frontal system to move into the area from the northwest, and they were northeast of the airport heading southwest. He did not doubt the accuracy of the ATIS report of 10 miles visibility because he could see the lights of the city while they were in the airspace. Moreover, the airplane's radar, which showed a curved red and magenta line about 5 miles northwest of the airport, indicated that the stormcells "would cross across the approach [end] of [runway] 19."

He believed that the flights that were executing missed approaches around that time were doing so because of the weather on the approach to runway 19. However, since USAir 105 was to go to runway 27 he believed that the weather would be different than that encountered on approach to runway 19. In his aviation career he had seen variations in the weather among runways within large fields, such as Chicago O'Hare and New York Kennedy.

The first officer added that he and the captain did not discuss the weather before they began to execute the approach. Further, they had no reason to question the report in the MCI ATIS information Romeo report of 10 miles visibility at MCI since they could see the lights of Kansas City and could maintain ground contact throughout the approach.

An airplane's color weather radar portrays the intensity of precipitation through color. Green indicates light precipitation, yellow indicates moderate precipitation, and red or magenta indicates intense precipitation.
flightcrews must rely on the weather information that ATC gives them, particularly when the weather is "less than desirable."

He estimated that he "picked up the runway [27] environment" when the airplane was at 1,700 feet msl. After leveling off at the MDA of 1,400 feet, "all of a sudden we had this torrential downpour" which he described as "the heaviest rain I've ever seen or been in my life." Nevertheless, he did not lose sight of the runway lights. He believed that they had encountered the rain between an estimated 1.8 and 1.3 DME on the approach path.

When he first noted the lights, he called out "runway lights in sight" and the captain responded, "I got 'em." He described the lights as "full bright, very bright and there were two long lines." He had no doubt at any point during the approach to runway 27 that the lights were associated with the runway. At 500 feet agl he made his last scan of the instruments, noting "air speed, descent [rate] [making] sure we had no flags [and] everything is stabilized." He said that he did not see the VASI.

Later in the interview he said that:

we never saw the airport. When we were turned in on the localizer, we saw city lights on our descent to MDA we entered a little cloud bank, a layer of clouds. When we broke out we saw the runway lights. I am assuming since there were kind of yellowish, dim lights, as I said, off the left that might have been terminal lights or something like that.

In his initial interview, the first officer stated that on approach to runway 27 he called out, "I got the rabbit," a reference to an approach light system that was not present at runway 27. During the second interview he clarified this statement, saying that he had meant to say runway lights but had said approach lights or rabbit by mistake. Further, while he did not say whether he saw the REIL flashing, he said that he "saw something flashing" and that the flashing lights were white.

He described the events just preceding the wire strike:

The wipers were called for. I turned them on. And as I said, I sensed the aircraft falling at an abnormal rate, descending at an abnormal rate, at which time I looked down, I had the visual cue of the lights being not where they should be. So at that point I immediately called for max power, were my exact words, and I yelled it twice. And then I said get out of here, at which time, as he was bringing, it's so instantaneous an error, [the captain] George firewalled the throttles, and at that time the aircraft made contact with something. I sensed the aircraft almost being suspended for a brief instant there was a slight hesitation then there was a brilliant flash. And this all happened in a microsecond. There was a brilliant flash and the aircraft then, whenever George took the yoke and brought it back into a climb attitude
and the aircraft started to go around, at which time my hand came immediately off of the wiper switch and I grabbed the flap handle and I went to flaps 15 and he called for the gear, with my other hand I reached over and I put the gear up with my right hand. And the aircraft, we turned left on the missed approach.

The first officer stated that he had not flown back course approaches "on a regular basis" but had occasionally executed them while flying throughout the company system. However, he had not often encountered a VDP and had received little training and no simulator exposure to a VDP before the incident.

The captain generally agreed with the first officer's account of the incident. He had heard pilots indicating that they were executing missed approaches, including the reference to "the wall of water," but he did not interpret these statements as evidence of a "visibility problem" at runway 27 since those aircraft had been on approach to runway 19. Having been to MCI previously, the captain was well aware of how "spread out" the airport was. This belief was reinforced "from looking at the radar the way the weather was and [because] the tower didn't report anything changing at the airport."

He said that because there was no ADF (automatic direction finder) on the localizer back course approach, he could not have recognized that the intercept heading the east arrival controller gave USAir 105 would take the flight inside Mizzo, the final approach fix. He did not recall the DME reading when the flight intercepted the localizer.

The captain stated that he was looking "back and forth" at the instruments and outside the cockpit throughout the approach. He estimated that when they broke out about 200 to 300 feet above minimums they were approximately 3 miles from the runway and "looking at it." He then saw two strobe lights that were white and very bright, lights that he continued to see throughout the execution of the approach. He believed that the first officer had seen them first. After they had encountered the rain, he could also see the runway lights.

Since there were few lights on the west side of MCI, it was difficult to assess accurately the prevailing visibility. Because he was looking at the runway and the "runway strobe lights (REIL)," there was no reason to assume that the visibility information given on the ATIS was incorrect. The captain stated that if he had been told that the visibility was 1/2 mile, he would have discontinued the approach.

When they broke out of the overcast:

we were looking at the strobe lights. When I started down, we ran into that wall of water or whatever it was, and I checked the [descent rate], stopped the descent there and when I called for the wipers, the reason I called for them was to make a decision. But that decision was already made by
something else which I haven’t been able to explain. When my eyes came back down we were already too low. We were actually seeing clear, I think, but everything had changed. I was getting ready to make a decision [to abandon the approach] at that time but I never got to make it.

After they encountered the rain, he looked up to see if the wiper switch had been placed correctly. When he looked outside again, "everything had changed." Then he thought:

something’s not right. I was still looking outside, until when [the first officer] Mike said go around, which was just a split instant later. I brought the power up. I was just a split second after that when we heard the bang.

He did not see the VASI during the execution of the approach. He said that he believed that the VASI was "not working" at the time of the incident.

The captain could not remember receiving any training on the VDP, and he said that he had not flown back course approaches very often in his airline career. He did not note the presence of the VDP before executing the approach. He explained:

I would gladly have complied with the VDP. But I have read an approach plate the same way for 20 years. Now on the Jeppesens, when you get down to the final approach fix and altitude providing there’s no other step down, you go from final approach or step down and then you look down to minimums. Now I know there’s only about that much separating VDP from that other number, but you didn’t know how to speed read and you skipped words. Now I suspect that is what happened because I’ve been in there twice before I think and I had never, I mean, their problem too is that not all nonprecision approaches have VDP.

1.17.8 FAA En Route Inspections

At the time of the incident, the FAA provided the following guidance to their inspectors who observe a safety hazard or a potential violation of FARs, while performing an en route inspection, in FAA Handbook 8430.6C, Paragraph 987 (i):

During en route inspections, the inspector must be alert to point out any apparent hazard to flight or potential violations and inform the crew as to the possible consequences; e.g., a climb through an assigned altitude.
The FAA inspector who occupied the cockpit observer's seat on USAir 105 was en route to MCI to conduct a flight check for a USAir Boeing 767 captain candidate.

After the incident, he reported, both in his statement and in the interviews, that the takeoff, climb, and en route portion of the flight was normal (see appendix G). He wrote:

As we approached 3000' the localizer was almost pegged to the left of the captain's HSI [horizontal situation indicator]. The captain made a small left turn and commanded "checklist." About this time we entered heavy rain that increased in intensity throughout the approach. At this time I observed the captain's altimeter to be reading 2500' and that he was correcting a slight overshoot of the localizer, of approximately 1/2 dot, and was tracking the localized descending at between 800 and 1500 feet per minute. The captain leveled the aircraft at 1400' and approximately 5 seconds later, the F/O [first officer] responded "runway in sight." Throughout the entire approach, I was able to see ground lights out both side windows and portions of both windscreens. Due to the position of the jump seat on the B-737 and the heavy rain, and the fact that the windshield wipers do not cover the center portion of the windscreens, I could not see anything directly in front of the aircraft. During this entire flight, I at no time, ever had visual contact with the MCI airport or the runway environment.

He said that after the flight was given headings to the runway 27 localizer back course approach, the captain asked the first officer to obtain a different missed approach procedure from the published one. At that point,

The co-pilot initiated a different missed approach I assume because they were both looking in the area, both of them had their approach plates out on their flight kits. They both still had the [runway] 19 ILS on their control columns and they stayed on their control columns throughout the entire flight. In fact, when we got to Salina they were still on there. And the next morning I did observe that both of their approach plates for runway 27 were open on their flight kits. The co-pilot started reading the approach to the captain at some point just prior to Mizzo.

He was not required to possess, and he did not have accessible and open, approach charts for the MCI approaches. He was not aware at that time that the runway 27 back course localizer approach incorporated a VDP. He did not remember whether the flight crew in their approach briefing or thereafter, had mentioned the VDP.
The inspector said that the captain "wired" the localizer by the time the airplane reached 2,500 feet msl and had excellent control of the airspeed, maintaining bug plus 5 knots. He stated that "he felt he [the captain] made a fairly stabilized approach. In other words, I never felt we were unstabilized during the approach."

He said that the first officer was looking out the forward windscreens and the captain was scanning his instruments during the approach. The first officer reported, 'I've got the runway,' then the captain looked up and said 'I got it.' At that point, he stated:

I didn't observe either one of them go back in the cockpit until the impact and they both went back in the cockpit then. I know at impact they were both out of the cockpit and after impact they both came back into the cockpit.

He believed that they were about 150 to 200 feet above the runway when the "bang" occurred.

FAA policy and procedures required that the inspector complete a form indicating the quality of the performance of the flightcrew on the flight that had been inspected. The inspector indicated that the performance of the crew was unacceptable because "on approach to MCI, aircraft struck power lines approximately 6,000 feet from runway threshold. See report to NTSB."

The inspector did not indicate to the crew during the flight, and his report did not address the crew's nonadherence to the east arrival controller's clearance to "maintain three thousand [feet msl] until established on the localizer."

In response to a request from the Safety Board, the Boeing Company supplied data (see appendix H) that indicated that an individual sitting in a "normal position" on the Boeing 737 cockpit observer's seat could see about 100° down the center of the nose of the airplane. An individual sitting in the "alert position" leaning forward could see about 180° down the center of nose of the airplane.

1.17.10 FAA Oversight of USAir

From September 18 to October 6, 1989, the FAA conducted "special surveillance" of USAir proficiency checks and training, cockpit en route inspections, flightcrew and flight attendant manuals, recurrent crew training, and flight dispatch procedures.

12 Reference speed used on an airplane's final approach path. It is based primarily on an airplane's weight, configuration, as well as environmental and other factors.

13 Four categories were available: unacceptable, potential, information and exceeds.
Two incidents involving USAir flights prompted a series of FAA reviews beginning about September 8, 1989, and ending with publication of the report: USAir, Inc. Aircrew Designated Examiner/Flight Training Program Assessment in October. The findings were critical of USAir's cockpit resource training program, company policy on flight crew approach briefings, lack of crew coordination between pilots and flight attendants, stereotyped flight training and checking, monitoring of adverse training trends, deficient international dispatcher training, and several flight attendant training and equipment matters.

USAir officials disagreed with the report by saying that the programs and procedures under criticism were approved by the FAA and, in most cases, exceeded basic FAA requirements. The author of the report testified at the Safety Board's public hearing that: "We recommended some technique changes. They are changes that could take place in a relatively short period of time. They have the quality people and equipment to accomplish a job. It is a matter of changing techniques in a few areas [and they are doing that] at a rapid pace at this moment."

2. ANALYSIS

2.1 General

The crewmembers of USAir 105 were certificated in accordance with applicable FARs. The MCI air traffic controllers were certificated to perform their duties in accordance with applicable requirements and FARs. The FAA inspector was certificated to perform his duties in accordance with applicable FARs. No preexisting defects were found in the airplane's structure, systems, or powerplants that could have contributed to the incident. The inoperative first officer's radio altimeter had no effect on the conduct of the flight. Although a hydraulic system was breached after USAir 105 struck the electrical transmission wires near MCI, the subsequent difficulty with the hydraulic system did not compromise the ability of the flight crew to fly the airplane, as evidenced by USAir 105's uneventful landing in Salina, Kansas.

USAir 105 was a routine flight until its arrival into the MCI airspace. From then until the missed approach, both the flight crew and the air traffic controllers faced a dynamic situation influenced by the adverse weather.

The Safety Board examined the factors that may have affected the performance of the flight crew of USAir 105 and the performance of the MCI controllers. In addition, the Safety Board reviewed the performance of the FAA inspector who occupied the cockpit observer's seat to determine the actions that he could have taken to prevent the incident. Additionally, in light of the flight crew's unfamiliarity with the VDP, the Safety Board examined FAA regulations, advisory material and policy on VDPs. The Safety Board also examined the minimum safe altitude warning (MSAW) system at MCI and the application of video camera recording technology to flight decks.
2.2 Weather

The Safety Board’s examination of the weather at MCI reveals that at 2131, a line of thunderstorms passed over the airport. The leading edge of the gust front from the thunderstorm was 4.2 miles east of the approach end of runway 27. USAir 105 most likely encountered the gust front about 5.5 miles east of the runway, as well as heavy rain about a mile later. The airplane remained in the rain until the flightcrew executed the missed approach and departed to the west. A narrow band of low-surface visibility of 1/2 mile or less, associated with the stormcell, also covered the final approach course when USAir 105 was on the approach.

The barograph data reveal a sharp rise in pressure at MCI of 0.10 inch of mercury about 2122. From then to 2133, the pressure fell 0.05 inch. There were no recorded localized pressure changes that would have adversely affected the aerodynamic performance or instrumentation of USAir 105 while it was on final approach to runway 27 at MCI. Moreover, the effects of ambient pressure changes on barometric instruments would have been manifested by a difference between the transponder encoded altitude recorded by the ATC radar at MCI when corrected to msl altitude by applying the reported barometric altimeter setting and the airplane’s actual height above the ground. The fact that the reported altitude corresponded with the approximate altitude of the wires that the airplane struck indicates that the flightcrew was not misled by possible erroneous altitude indications. This conclusion was also supported by the altitude recorded on the airplane’s flight data recorder which would have corresponded to that indicated on the cockpit altimeters.

As the airplane descended through 2,500 feet msl, the airspeed increased by about 30 knots, from about 140 knots to about 170 knots, and the airplane leveled off. These changes may have been associated with passage through the leading edge of a gust front. About 20 seconds later, the descent was resumed. Thereafter, the airspeed remained stabilized about 150 knots and the descent remained fairly constant through MDA until the wire strike. A slight decrease in airspeed beginning about 10 seconds before the wire strike was most likely caused by thrust and configuration changes. Consequently, the Safety Board found no evidence that the airplane was affected by windshear at the time of the incident. Therefore, the Safety Board concludes that, despite the fact that the flightcrew should not have initiated the approach because of the prevailing visibility, weather factors did not affect the ability of the flightcrew to avoid the wires that USAir 105 struck.

2.3 Flightcrew

The evidence indicates that flightcrew actions were the primary factors affecting the flight path of USAir 105. For example, the airplane’s heading change to the north about 30 seconds before the wire strike suggests that the crew turned the airplane in response to the first officer’s call that he had identified the runway lights. The nature of this change in the flight path, as well as the time and altitude at which the change occurred, gives credence to the crew’s explanation of their actions and is supported by
the statements of the FAA inspector that both crewmembers looked outside the
cockpit after the first officer's call.

The Safety Board believes that the turn preceding the wire strike
followed several errors by the flightcrew of USAir 105 in their execution of
the localizer back course approach to runway 27 at MCI. They:

continued an instrument approach even after it became
apparent that, because of the radar vectors provided by ATC,
they would not intercept the localizer until well within the
final approach fix,

descended below 3,000 feet well before the airplane was
established on the back course localizer, contrary to the
approach clearance they had received,

were unaware of their distance from the runway when they
improperly descended below MDA before reaching the VDP,

failed to determine the visual aids, lights, and markings
that were associated with the runway,

were unfamiliar with the regulation governing visual descent
points (VDPs) and the application of VDPs to nonprecision
approaches, and

failed to discontinue the approach despite the horizontal
situation indicator (HSI) indicating full-scale localizer
deflection, while at low altitude, at night, in instrument
meteorological conditions, over 2 miles inside the final
approach fix.

The evidence indicates that the flightcrew failed to review
adequately the approach charts necessary for the execution of the back course
localizer approach to runway 27. The FAA inspector commented that both the
captain and first officer maintained the runway 19 approach chart on their
respective control columns throughout the approach to runway 27 and through
the approach and landing at Salina. Further, the evidence suggests that both
the captain and first officer were unaware that runway 27 was equipped with a
VASI, contrary to the captain's statement that he had assumed that the VASI
was not operating. According to the first officer, he did not brief the
captain on the visual aids, lights, and markings associated with MCI's
runway 19 when they were preparing for the approach to that runway; he could
not recall if he briefed the captain on those features associated with
runway 27.

About 45 miles northeast of MCI, the flightcrew began to prepare
for the execution of the ILS approach to MCI's runway 19. USAir 105 was
about 15 miles from the airport, at an approximate altitude of 7,000 feet,
when the active runway was changed and the flightcrew was given vectors for
the localizer back course approach to runway 27. Because the flight would
typically intercept the localizer about 2 to 3 minutes later, the flightcrew
had only limited time available to accomplish the following: retune and identify navigation frequencies, review headings, altitudes and related navigational information, examine the missed approach procedures, compare the published missed approach procedures with the airplane's airborne weather radar information on the adverse weather, and ask for and receive alternative missed approach instructions. The flightcrew performed these activities near a busy airport while they were monitoring and, when necessary, responding to ATC communications, as well as monitoring flight parameters, controlling the airplane, and noting the location of the adverse weather.

Neither the flightcrew nor the FAA inspector said that the flightcrew had appeared rushed when they changed to runway 27. However, the evidence indicates that in preparing for the runway 27 approach, the crew overlooked the fact that the localizer back course approach incorporated a VDP and that the runway was equipped with a VASI. Moreover, after USAir 105 reached the MDA, the captain, who should have been maintaining the instrument scan, failed to note the airplane's distance to the runway after the first officer stated he had seen the runway lights. This distance was critical to the proper execution of the approach. According to the radar data, the descent from MDA began about 2 miles from the end of the runway, rather than from the 0.8 DME position from which it should have been initiated.

The Safety Board believes that the crew should not have initiated the localizer back course approach to runway 27 before they had reviewed adequately the approach charts. The proper procedures in the execution of the approach would have resulted in the flightcrew leveling the airplane at the MDA and continuing at that altitude, 1,400 feet, until the VDP was reached and one of several lights or markings associated with the runway was identified, or the VASI was recognized and the vertical flight path intercepted. This crew did not level the airplane at the MDA for more than 2 seconds, was not aware that a VDP was a required element of the approach, and did not recognize the presence of the VASI.

Further, the flightcrew should have recognized that because a localizer back course approach provides limited flightpath guidance in comparison with the precision instrument approaches that air carrier pilots typically execute, it was imperative that they review the approach charts to obtain as much information about the approach as possible, such as runway lighting and markings associated with the runway. By contrast, precision approaches contain precise vertical and lateral electronic flightpath guidance and approach light systems for visual identification of the runway and runway lights. In addition, identification of MCI's runway 27 was complicated by the lack of approach lights, the dark terrain, as well as the competing visual cues of airport lights, highway lights, and other lights associated with the runway environment. As a result, the approach in this incident called for particular crew vigilance, vigilance that the crew of USAir 105 did not employ.

There were aids available to the flightcrew such as a VASI, REIL, and runway edge lights, which, while not as helpful or precise as the guidance typically associated with precision approaches, offered assistance in executing the localizer back course approach. Of these aids, the VASI was
probably most critical to executing the approach because it provided visual vertical guidance. Used properly, this guidance, while not as precise as the vertical guidance of an instrument landing system (ILS) approach, would have enabled the flight crew to descend from a point at the MDA to the runway touchdown zone. The role of the VASI in the proper execution of nonprecision approaches is underscored by the fact that the majority of domestic airports certified for air carrier operations, with runways that allow nonprecision instrument approaches, incorporate VASIs at those runways. Nevertheless, the flight crewmembers did not question ATC about the status of the VASI.

Moreover, the flight crew of USAir 105 apparently did not recognize that the airplane would not be established on the localizer until well along the localizer path, inside the final approach fix. By descending below 3,000 feet before being established on the localizer, the flight crew did not adhere to an air traffic control clearance.

According to the FAA inspector, after the first officer, who had been scanning outside the cockpit, declared that he could see the runway, both flight crewmembers maintained a scan outside the cockpit until impact with the wires. The Safety Board believes that both flight crewmembers focused primarily on what they believed to be lights associated with the runway; the captain stated that he believed that he was looking at the strobes associated with the REIL and the first officer thought that he was looking at the runway edge lights.

The difference between what the crewmembers were actually looking at and the REIL and runway lights was substantial. The lights that they were most likely observing were mercury vapor lights, which maintain an orange-beige hue, associated with a large automobile storage facility. The REIL consists of two strobe lights that flash together regularly at either side of the runway threshold. The runway edge lights are a string of lights that line both sides of the runway. Given the dissimilarity in the lights, the Safety Board examined factors that could explain the gross misidentification of the flight crew.

Stimuli that the sense organs receive from visual, auditory, and other sources become perceptions following neural processing. Gregory describes how the eye, or more accurately, the retina, provides the brain with images that are "read" or processed. Certain images, which are more difficult for the brain to process than others, result in errors in the neural processing known as visual illusions. Illusions, according to Gregory, could occur in any of the sense modalities.

14 Data supplied by the FAA’s National Flight Data Center for airports with FAR Part 139 authority, as of June 22, 1990.

Aviation creates unique perceptual demands because many of the cues typically relied on in day-to-day perceptual activities are lacking. For example, pilots must learn to rely on certain visual cues and ignore others, such as kinesthetic or body orientation cues, to avoid illusions that could lead to potentially catastrophic misinterpretations of an aircraft’s orientation in space.

Leibowitz16 suggests that two visual processes, one used for object recognition and the other for visual guidance, may partially explain the phenomenon of visual illusions among pilots. Recognition vision, he wrote, "depends critically on the amount of light present as well as [the presence] of a sharply focused image." If one of these conditions is not satisfied, "we have difficulty reading or recognizing objects." Moreover, he indicated that recognizing objects when transitioning from one set of cues to another may "require an extended period of time." As a result, pilots making the transition from monitoring instruments to identifying objects outside an airplane may be susceptible to illusions during the time it takes to complete the transition.

The application of theories and evidence on human visual perception to the investigation of aviation accidents is limited. Haber, in a discussion of an accident involving an air force fighter,17 wrote that several factors together increase the probability that a pilot will experience an illusion, an illusion that could lead to an accident. These include target fixation, which limits a pilot’s ability to perceive other, perhaps relevant, cues. Haber added:

\begin{quote}
humans are not completely at the mercy of an uninformative visual world when flying over unfamiliar [terrain]. We make assumptions about the terrain or the objects and then use those assumptions to determine [the] sizes of [various] distances. Pilots can thus test their patterns of assumptions, especially if they can get fairly close to the objects observed. Even so, the entire process is one of assumptions supported only by consistency. The effects of intense or heavy task loadings, fatigue, stress, anxiety, bad weather, or mechanical malfunctions merely add more potentially deadly factors to the equation.
\end{quote}

The Safety Board believes that the flightcrew of USAir 105 misidentified lights on the ground for those associated with the runway while executing the approach to MCI’s runway 27. Several factors may have caused the misidentification. The darkness reduced the visual recognition ability

17Haber, R. H. "Why Lou-Flying Fighter Planes Crash: Perceptual and Attentional Factors in Collisions with the Ground." Human Factors, 1987, 29, 519-532.
and the visual acuity of the crew. Further, it was raining at the time which distorted the view through the windscreen. In addition, although the actual time that elapsed is undetermined, the first officer was transitioning from monitoring instruments inside the cockpit to scanning the outside environment. As Leibowitz suggested, the time needed to effect the transition could have been insufficient for the first officer to fully identify the lights he was observing.

Furthermore, the stress levels of the crew were probably elevated. Both crewmembers had been attempting to find the runway after altering quickly their preparations for the approach that they would be executing and because they had just flown through a stormcell. The first officer's declaration that he had the runway in sight, consistent with Haber's analysis, provided the captain with an expectation and a suggestion of how the lights would appear, that is, they would be associated with a runway. These circumstances could have influenced the crewmembers to misidentify the lights they were observing for lights associated with the runway. Since the first officer did not actually identify the lights he was observing, each crewmember in effect perceived the lights differently, as different elements of the same runway lighting configuration.

The Safety Board believes that the flightcrew failed to use resources, such as the VASI and the VDP, and prematurely descended below MDA without positively identifying their position in relation to the runway. The flightcrew then misidentified lights, located more than 1 mile from the runway threshold, as being associated with runway 27. This sequence of events led to the flightcrew's premature descent below MDA leading to the incident. Because the responsibility for the conduct of the flight belonged to the flightcrew and because the crewmembers in their continuation of the approach until the flight struck electrical transmission wires, the Safety Board believes that the actions of the flightcrew of USAir 105 caused the incident.

The FAA has apparently recognized that misidentifications can occur near airports because on some approach charts it has alerted pilots to maintain vigilance to avoid confusing these lights with those associated with runways. This incident illustrates the need for placing such a warning on the approach charts for MCI's runway 27. However, the Safety Board is concerned that approach charts to other runways with potentially confusing features may not display cautionary warnings. Therefore, the Safety Board believes that the FAA should solicit input from pilots to identify potentially confusing lights or other features near runways associated with instrument approach charts that do not display cautionary warnings on those features and to modify the charts of runways identified by pilots to incorporate the needed warnings.

2.4 Controllers

The Safety Board believes that on the night of the incident the MCI controllers did not provide adequate air traffic control services in general and to USAir 105 in particular. Moreover, after the incident, many of these controllers did not appear to recognize the potential effect of
their performance, which could have lead to a catastrophic accident. These performance deficiencies included the failure to:

- perform a timely weather observation following deterioration in the prevailing visibility to below 4 miles,

- disseminate visibility information in a timely manner within the facility after the weather observation had been performed,

- solicit PIREPs from flightcrews who were making reports on the MCI weather,

- disseminate PIREPs to MCI controllers and flightcrews who had no means of hearing the initial pilot reports,

- provide the flightcrew of USAir 105 with correct information on the prevailing visibility,

- vector USAir 105 outside the final approach fix,

- inform flightcrews over the ATIS that the LLWAS was out of service,

- assign priorities to ATC tasks according to their importance and criticality to flight safety, and

- assign personnel to properly supervise portions of the facility while the supervisors of record were performing routine controller duties.

An ATC action that directly related to this incident involved the lack of timely dissemination of weather information, both from the MCI ATC facility to the flights in the MCI airspace and within the ATC facility itself. The slow dissemination occurred during a time of rapid weather deterioration, when timely dissemination was most needed.

The controller-in-charge, who was also serving as the tower cab coordinator, did not recognize the need to take new visibility measurements after the visibility had deteriorated as a result of the heavy rain, despite the requirement that visibility measurements be taken when the prevailing visibility dropped below 4 miles. Instead, the evidence indicates that it was the specific request of the NWS, several minutes after the visibility had decreased, that precipitated the new visibility observation.

Further, after tower personnel had taken the new visibility measurements, which resulted in a determination that the visibility was 1/2 mile, the controller-in-charge did not disseminate the information to either flightcrews or controllers within the MCI TRACON. Again, only a specific request for the information, from the west handoff controller, prompted the controller-in-charge to disseminate the information, approximately 3 1/2 minutes after the measurements had been taken. Yet, in this interval, the controller-in-charge was aware that USAir 105 had been
cleared for the localizer back course approach, despite the fact that the approach required at least 1 mile visibility. At that time, USAir 105 was about 20 miles from runway 27, sufficient distance from MCI to provide the flight crewmembers adequate time to consider and prepare for alternative actions.

Further, the controller-in-charge demonstrated poor judgment during a dynamic situation by continually responding to relatively trivial requests over the unrecorded telephone line, such as informing airlines on the location of their airplanes, when more pressing and critical needs, directly affecting flight safety, had not been addressed. The Safety Board believes that given the weather and the air traffic at MCI at that time, the controller-in-charge should have disregarded the telephone requests and quickly disseminated critical weather information to those inside and outside the MCI ATC facility who needed that information.

The actions of the east arrival controller directly affected USAir 105. For example, despite requirements that flights on the localizer back course approach to runway 27 be vectored to outside the final approach fix, she vectored the flight well inside Mizzo, the final approach fix. Such vectors could have contributed to an unstabilized approach because the flight was required to maintain 3,000 feet msl until intercepting the localizer. USAir 105 did not join the localizer until it was about 2 1/2 miles from the runway threshold. Had the crew adhered to the east arrival controller's clearance, they would have had to descend about 2,600 feet in those 2 1/2 miles, rather than in the 6-mile distance from Mizzo to the threshold, making it difficult for the flightcrew in efforts to execute a stabilized descent.

In addition, although controllers and pilots made several explicit statements about the weather, such as the 2127:38 report of the PAT 130 flightcrew “that wall of water just covered the airport down there...it's not visible anymore,” the east arrival controller failed to solicit PIREPs from this flightcrew or request amplifying information about the weather from controllers who were commenting or reporting on weather conditions. Further, the east arrival controller stated that after she had handed off USAir 105 to the local controller the flight was, in effect, no longer her responsibility. However, she was aware that the flightcrew had not been informed of the prevailing visibility, which was below that required for initiation of the approach.

These oversights by the east arrival controller went unnoticed because the TRACON supervisor assigned himself to the west arrival controller position while he was also acting as supervisor. This limited his ability to monitor the performance of the east arrival controller. Because the severe weather was centered west of MCI, the air traffic was greatly reduced, as was the need for a controller dedicated to the west radar position. As a supervisor, he should have recognized the need to give his full attention to the supervision of the TRACON controllers at a time when weather factors were rapidly changing and greatly influencing the nature of operations at MCI.
The ground controller heard the 2125:05 report on the wind shift and on the intensity of the rain by the flightcrew of Braniff 659. He told the flightcrew that he agreed with their assessment of the weather, but he failed to disseminate their report to others in the MCI facility.

Between 2125 and 2127, the controller-in-charge informed the local controller that the official tower visibility was 1/2 mile. During this interval, at 2126:29, the local controller transmitted in the blind the RVR for runway 19, which ranged from 1,800 feet to 2,800 feet, according to the location on the runway. However, he also did not inform the flightcrew of USAir 105 that the MCI visibility was below the minimum required to permit execution of the approach.

Finally, the clearance delivery/flight data controller did not include on the ATIS information that the LLWAS was out of service. Although this information would not, in all probability, have altered the chain of events that led to the incident, the absence of such information provided incorrect information to the flightcrew. Since there was an LLWAS at MCI, the flightcrew had every reason to believe that ATC would be transmitting LLWAS information on variations in wind speed and/or direction around the airfield. The lack of such information, in the presence of severe weather near the field, may have led the flightcrew to believe that the weather would be less severe than it was. However, the crew was aware that the wind speed was 24 knots gusting to 39 knots and was therefore probably alert to the possibility of turbulence.

The Safety Board is concerned that some of the MCI controllers did not appear to recognize deficiencies in their performance on the night of the incident and the effect of these deficiencies on the performance of the flightcrew of USAir 105. For example, the east arrival controller did not acknowledge, even after being shown a plot of the radar track, that USAir 105 joined the localizer well inside the final approach fix. Moreover, the statement of the chief of the MCI facility that "weather [dissemination] falls about No. 6" in ATC priorities contradicts FAA requirements. The FAA guidance clearly states that "it is virtually impossible to develop a standard list of duty priorities" and that priorities must be determined by the prevailing circumstances. The Safety Board believes that on the night of the incident weather dissemination to flightcrews about to execute the localizer back course approach deserved a high priority since that information would have prevented the execution of that approach. In addition, the chief did not recognize the role of ATC in informing pilots about the conditions they can expect. Contrary to what the chief stated, the fact remains that tower controllers and not pilots are in the best position to observe and disseminate information on prevailing conditions at the field, particularly in dynamic weather situations.

Although the flightcrew of USAir was ultimately responsible for the conduct of the flight and must assume primary responsibility for the cause of the incident, the Safety Board believes that the MCI traffic controllers placed the flightcrew in a situation that jeopardized their ability to conduct the flight safely. Consequently, the Safety Board believes that they contributed to the cause of the incident.
In April 1990, the Safety Board asked the FAA to describe its response to the ATC performance deficiencies at MCI that were uncovered in the investigation of this incident. The Safety Board later reiterated its request to the FAA. On July 12, 1990, the FAA responded that it made no changes to procedures at its MCI ATC facility and did not take disciplinary action against or decertify any controller involved in the incident at MCI. However, MCI controllers were counseled and given refresher training "regarding watch coverage, position responsibilities, weather information, ATIS procedures, airport conditions, runway selection, holding procedures, vectoring, radar arrival information and the handling of emergencies." Given the lack of information on taking disciplinary action of any kind against some of the MCI controllers, the Safety Board hopes that the FAA's actions at its MCI ATC facility will correct the deficiencies noted there.

2.5 Oversight of Air Traffic Controller Performance

The Safety Board's investigations of previous accidents and incidents involving ATC deficiencies, as well as its investigations of ATC operational errors, have been critical of the FAA's safety oversight and quality assurance of the ATC system. For example, following its investigation of a series of operational errors at Chicago's O'Hare International Airport, the Safety Board issued the following recommendation to the FAA:

A-88-90

Establish an independent national division that would be responsible for the quality assurance of the air traffic control system and that would report directly to the Administrator of the Federal Aviation Administration.

On November 4, 1988, the FAA Administrator responded to this recommendation by saying, in part:

The FAA has established the Office of Air Traffic Evaluations and Analysis under the Associate Administrator for Air Traffic to perform the overall quality assurance function of the air traffic control system. This office is, by design, separate from other elements of the air traffic organization to ensure the creation of an independent body to ensure an unbiased evaluation and quality assurance function.

The Safety Board's investigation of a subsequent operational error that occurred on October 12, 1988, involving the President's airplane, further illustrated the reduced effectiveness of the FAA's national quality assurance program. In its letter to the FAA, the Safety Board reiterated its belief that the national quality assurance of the ATC system "would be better discharged by a unit that had no allegiance to the air traffic service and reported its findings, corrective actions, and follow-up reports directly...

to the FAA Administrator." In addition, the Safety Board noted in the letter that the Office referred to by the Administrator in his response of November 4, 1988, had actually been created 2 years previously and placed under the authority of the Associate Administrator for Air Traffic, the person responsible for the operation and oversight of the ATC system. As a result, the Safety Board concluded that because of this organizational structure, the ATC quality assurance office was, "in effect, evaluating itself."

On December 8, 1988, the Secretary of Transportation changed Order 1100.2C of the Department of Transportation and, in a memorandum to the FAA Administrator and the Acting Chairman of the Safety Board, explained that he had moved the air traffic quality assurance function from the FAA's Associate Administrator for Air Traffic to the newly created Office of Quality Assurance under the Associate Administrator for Aviation Safety. In his letter to the Acting Chairman, the Secretary went on to say, in part, "We are confident that you [will] find that these positive actions taken by the Department comply with your Recommendations and will consequently be able to place Recommendations A-88-90 and A-88-157 in the Closed-Acceptable Action category."

Following the change of administration in early 1989, the newly appointed Secretary of Transportation informed senior FAA officials that the quality assurance program would be re instituted within the Air Traffic Service. Concurrently, the FAA established the Office of Safety Quality Assurance under the Administrator for Aviation Safety which was designed to provide safety oversight to quality assurance endeavors in six major operational programs within the FAA to include the Air Traffic Service. This office would report directly to the FAA Administrator. FAA senior staff then provided briefings to members of the Safety Board to explain how they envisioned the incorporation of the organizational change.

On March 7, 1989, Safety Board staff met with the FAA's Associate Administrator for Aviation Safety. He informed the staff that these actions were being taken in response to Safety Recommendation A-88-90. The Associate Administrator said that the Office of Safety Quality Assurance would enhance the quality assurance to and safety oversight of the ATC system. While the Safety Board was encouraged by the organizational change, it noted that the FAA had staffed this function with only two specialists. The Safety Board concluded that this new office can monitor effectively the ATC system and ensure that deficiencies are addressed and corrected, but only if the office is given a staff adequate to exercise its responsibility. The Safety Board closed recommendation A-88-90 and classified it "Superseded" by recommendation A-89-41.

Thereafter, the Safety Board conducted a special investigation of the FAA's Coast TRACON following an ATC operational error that led to a loss of separation between two air transport aircraft and addressed the issue of
substandard quality assurance of the ATC system. On May 23, 1989, the Safety Board issued the following safety recommendation to the FAA:

A-89-41

Implement and provide adequate staff and funding for the Federal Aviation Administration's Office of Safety Quality Assurance, which is located organizationally under the Associate Administrator for Aviation Safety, to monitor the air traffic control system and to ensure that operational and managerial shortcomings are identified and corrected.

On August 17, 1989, the FAA Administrator informed the Safety Board, in response to recommendation A-89-41 that the Office of Safety Quality Assurance would provide quality assurance and safety evaluation of activities to include the Air Traffic Service. He added that this office would "participate in program evaluations [and] independently analyze evaluation reports, conduct its own evaluation of the technical and managerial aspects of those program areas, develop recommendations for correcting deficiencies and actively track the implementation of the recommendations."

The Safety Board responded to the FAA Administrator on January 22, 1990, and noted that this office would be staffed by 19 persons, only 2 of whom would be dedicated to ATC issues. The Safety Board concluded that because of the small number of persons tasked with ATC quality assurance and the magnitude of the ATC system, the FAA's Office would not be capable of providing the necessary oversight of the ATC system and classified the recommendation as, "Open--Unacceptable Action."

On April 12, 1990, the FAA Administrator informed the Safety Board that:

the FAA's intention in establishing the Office of Safety Quality Assurance was not to exercise "total oversight" in a manner that would routinely involve its staff in the day-to-day events occurring in the system but to monitor and assess programs on a broad national scale. The daily developments of the air traffic system are examined by the Air Traffic Quality Assurance Program which the Office of Safety Quality Assurance monitors closely in its oversight function. The principal role of the Office of Aviation Safety is to monitor the system and to ensure that the Office of the Associate Administrator for Air Traffic has an effective quality assurance organization in place and functioning properly.

The Safety Board continues to lack confidence in the FAA's commitment to provide effective quality assurance and safety oversight of the ATC system. The evidence indicates that the FAA failed to take the necessary

actions to address and correct the numerous operational, administrative and managerial deficiencies identified in the investigation of this incident. The fact remains that the FAA's Office of Safety Quality Assurance is understaffed and without an approved charter outlining its responsibilities.

The findings of this and previous investigations underscore the need for the FAA to enhance the depth, frequency, and quality of its vigilance over the ATC system needed to address and prevent a recurrence of the type of ATC errors that were committed in this incident. Therefore, the Safety Board believes that the FAA should modify the functional statement of its Office of Safety Quality Assurance and provide sufficient resources to it to make it capable of providing total quality assurance and safety oversight of the ATC system. Thus, the Safety Board now classifies Safety Recommendation A-89-41 as "Closed-Unacceptable Action, Superceded" by Safety Recommendation A-90-125.

2.6 FAA Inspector

The Safety Board believes that the FAA policy regarding inspectors who witness unsafe practices or violations of FARs while performing en route inspections is appropriate. The policy suggests that, when necessary, inspectors tactfully and constructively direct the attention of flightcrews, during a flight, to unsafe practices, with little disruption to the routine of flight and with the authority of the pilot-in-command intact.

The evidence suggests that the FAA inspector performing the en route inspection on USAir 105 did not follow that guidance. During the flight, the crew did not adhere to an air traffic control clearance at least once. Yet he did not mention this occurrence in his statement and did not cite it in his report on the flightcrew's performance. Further, he claimed that he was unable to see through the airplane's windshield. However, Boeing data indicate that if he had leaned forward, he could have seen almost 20° down the nose of the airplane. Even before the execution of the approach, it should have been obvious to him that the crew did not adequately prepare for executing the localizer back course approach. The Safety Board concludes that the FAA inspector did not inform the crewmembers of the errors they were committing in their planning and execution of the localizer back course approach.

Although he did not violate FAA requirements in doing so, the inspector could not have examined MCI instrument approach charts during the en route inspection because they were inaccessible. Consequently, his inspection would have been deficient, regardless of the outcome of the flight, since he would have been unable to monitor adequately the flightcrew's execution of the instrument approach. The Safety Board believes that if the FAA inspector had informed the flightcrew of their inadequate preparation for the approach, of their nonadherence to the ATC clearance, or of the full-scale localizer deflection inside the final approach fix, they might have abandoned the approach and the incident would not have occurred. Therefore, the Safety Board concludes that this inspector did not fulfill his responsibilities while performing an en route inspection of USAir 105.
The Safety Board believes that the performance of the FAA inspector in this incident calls into question the quality of en route inspections. The fact that en route inspections are conducted by inspectors without referral to instrument approach charts indicates that, at a minimum, the most critical aspects of flight are unexamined during such inspections. Further, the fact that the inspector on USAir 105 failed to address a premature descent that was contrary to an ATC clearance raises questions about the FAA's training and guidance to its inspectors.

The criticality of proper en route inspections to flight safety cannot be overstated. The FAA en route inspection represents a final check that flight crews are adhering to company procedures and FAA regulations. If these inspections are substandard, critical aspects of flight safety may be in jeopardy. Consequently, the Safety Board believes that the FAA should require that inspectors have current instrument approach charts accessible during the conduct of en route inspections. In addition, the Safety Board believes that in view of the evidence on the quality of the performance of the inspector on USAir 105, the FAA should review its training, policies and procedures regarding en route flight inspections and revise them to increase the likelihood that inspectors will monitor crew performance and, as necessary, inform the crew of unsafe actions or violations of FARs.

2.7 Visual Descent Point

Neither the flight crewmember nor the FAA inspector on USAir 105 fully recognized the purpose and role of the VDP in executing a nonprecision approach. USAir referred to the VDP several times in its Flight Operations Manual. As a result, the flight crew was required to be familiar with the pertinent regulation. An FAA inspector whose role requires that he or she observe flightcrew compliance with FAA regulations should also be expected to be knowledgeable on VDPs.

The Safety Board believes that with the recent revisions to the pertinent rules, the FAA's stance on VDPs is contradictory. By dropping the requirement for VDPs from FAR Part 91, general operating and flight rules, and not from FAR Part 121, air carrier operating and flight rules, the FAA is, in effect, indicating that VDPs are critical to the safety of air carriers but not to regional airline flights operated under FAR Part 135 and to general aviation flights operated under FAR Part 91. Further, the Safety Board is concerned with the FAA's statement that VDPs that use DME fixes, which are the overwhelming majority of VDPs, may result in excessively steep or shallow descent angles due to "displacement factors and/or fix errors." Since DME is accurate and reliable enough to be used for other approach navigation purposes, including step-down points on nonprecision approaches, it would be sufficiently reliable and precise to use to establish VDPs. Given the reliability of current avionics, the Safety Board does not believe that there will be sufficient unreliability or inaccuracy in equipment to pose a danger to aircraft relying on DMEs in the execution of instrument approaches. Further, the Safety Board believes that the passengers on flights operated under FAR Part 135 should receive the same safety benefits that VDPs provide as passengers on flights operated under FAR Part 121.
Therefore, the Safety Board believes that the FAA should instate VDPs in FAR Part 135, Air Taxi Operators and Commercial Operators.

The VDP is a fix on nonprecision instrument approaches that applies only to DME-equipped aircraft. As such, it plays an important role in reducing the likelihood of premature descents in nonprecision approaches. The fact that the flightcrew of USAir 105 descended well before the VDP and that these crewmembers could not recall receiving simulator training employing VDPs indicates that pilot training in the execution of nonprecision approaches should be improved. Therefore, the Safety Board believes that the FAA should issue an Air Carrier Operations Bulletin directing principal operations inspectors to urge air carriers to assure that flightcrews are cognizant of the purpose of VDPs and to include approaches with VDPs in their simulator training.

2.8 Recording and Dissemination of Weather Information

In this incident, conversations between NWS personnel and FAA ATC personnel in MCI took place over an unrecorded telephone line. Subsequently, the exact nature of the transmission of the weather information, such as the time of transmission and whether the information was properly sent and received, were in dispute.

Following the incident, the NWS and the MCI ATC facility enhanced their procedures for acknowledging the transmission and receipt of weather information at MCI. However, the procedures do not contain a formal acknowledgement of the transmission of weather information, despite the fact that both FAA and NWS procedures encourage such requirements.

The Safety Board believes that the acknowledgement of the transmission of weather information is critical to assuring that such data is received and acted upon. With acknowledgement of receipt of a message, the sender is informed that the information has been received, there is a record of receipt for future reference, and there is some assurance that the message will be acted upon. Therefore, the Safety Board believes that the FAA should require acknowledgement of the transmission and receipt of all weather messages exchanged between an FAA ATC facility and the NWS at airports where weather information is regularly exchanged between the two entities, to include the time of receipt and the identity of the person receiving the information. Further, the exchange of such weather messages should occur over recorded telephone lines or recorded electronic transmission means, and the recordings should be retained for a reasonable amount of time.

2.9 Minimum Safe Altitude Warning (MSAW)

Although the MCI ATC radar facility was equipped with MSAW software, the MSAW alert failed to activate during the premature descent of USAir 105. Had it alerted the controller, he or she could have informed its flightcrew of their unsafe altitude, and the incident could have been avoided. Because USAir 105's premature descent, which took place more than a mile from the runway threshold, was inside the inhibit area designed to
minimize the number of false alerts of low aircraft that are maintaining a proper descent, the MSAW alert did not activate. This incident indicates the need to revise the parameters controlling the size of the MSAW inhibit areas. Therefore, the Safety Board urges the FAA to provide site adaptation guidance to encourage modification of MSAW parameters, as appropriate, to increase the MSAW protection areas and to minimize the extent of inhibit areas.

2.10 Cockpit Recording

Because USAir 105 flew for more than 1 hour after the incident, no CVR record of conversations that occurred during the incident was retained. Such a record might have assisted investigators to recognize the actions of the crewmembers and the FAA inspector in this incident. In previous aircraft accident investigations, both in this country and overseas, the limitations of CVRs have, on occasion, presented difficulties to investigators. This accident demonstrates the value of long-playing CVRs, which can record cockpit sounds for as long as 2 hours, to accident and incident investigations.

In addition, given current technology, many of the limitations of CVRs now in use could be overcome through the use of long-playing video recordings. Cockpit video cameras recording 2 hours or more might have assisted investigators in this incident, especially in examining the crew interactions. For example, the nature of the crew briefing and approach chart review that occurred in preparation for the localizer back course approach could have been recorded by long duration cockpit video recorders.

Although worthwhile information has been recovered from CVRs and sophisticated DFDRs, in several investigations the use of video technology might have complemented data supplied by those recorders and provided valuable additional information to accident investigators. For example, in the October 1987 accident involving a Piedmont Airlines Boeing 737, the airplane was destroyed and two passengers were injured after the airplane overran the runway upon landing at Charlotte, North Carolina. The Safety Board determined, through aerodynamic analyses of the airplane's performance, that the spoilers were armed before landing. The Safety Board concluded that the airplane's excessive speed and the captain's unstabilized approach caused the accident. A cockpit video recorder could have facilitated the determination of the arming of the spoilers, a determination that was ambiguous on the CVR. In the September 1986 accident involving a Midwest Express DC-9-10 in Milwaukee, Wisconsin, the airplane was destroyed and all 31 persons onboard were killed following a catastrophic engine failure shortly after takeoff. The Safety Board concluded, after analyses of airplane performance data, that the flight crew's improper use of flight controls led to an accelerated stall and the loss of airplane control, which caused the accident. However, the determination of the crew's rudder input, a critical element of the flight crew's flight control application, which was not recorded on the CVR, might have been determined by cockpit video recorder, as well as an expanded parameter DFDR. In the August 1988 accident involving a Delta Airlines Boeing 727 at Dallas-Ft. Worth International Airport, Texas, the airplane was destroyed and 14 passengers and crew were
killed. The Safety Board concluded that the captain and first officer's failure to set the flaps on takeoff, and with the failure of the takeoff warning system on the airplane, caused the accident. The determination of crew actions regarding flap extension before the takeoff could have been determined considerably earlier in the investigation with a video recording of the crew's actions, as well as by an expanded parameter DFDR.

Given the many transport aircraft in service today using only 5-parameter digital flight recorders** and the numerous pilot actions that occur without verbal or nonverbal communications, the amount of information that could be provided by a cockpit video recorder is considerable. The value of determining such information is especially great given the criticality of human factors issues of crew performance in understanding the cause of accidents. Although DFDRs and CVRs provide much valuable information, they cannot fully document the range of flightcrew actions and communications. Further, as the introduction of aircraft with electronic "glass" cockpit instrumentation to line service continues, the value of cockpit video recordings will increase as an aid to investigators attempting to determine the status of the cockpit instrumentation presented to the flightcrew.

On March 30, 1990, before the conclusion of its investigation of the January 1989 accident involving a British Midland Airways Boeing 737-400, near East Midlands Airport, the British Air Accidents Investigation Branch (AAIB) issued a recommendation to the Civil Aviation Authority calling for research into the application of closed-circuit television technology on aircraft. The recommendation sought to improve "methods of providing flight deck crews of public transport aircraft with visual information on the status of their aircraft by means of television monitoring." The recommendation also addressed the issue of such video recordings monitoring "flight deck presentations." The Safety Board agrees with the intent of the AAIB recommendation and believes that application of current technology of long duration video in the cockpits of air transport aircraft could prove to be a valuable addition to aircraft accident investigations. As a result, the Safety Board will monitor and evaluate progress in the application of video technology to the cockpits of air transport aircraft.

2.11 USAir Training and Procedures

The Safety Board's examination of USAir's training and procedures indicated that the company had complied with relevant FARs. Nevertheless, the company lacked guidance to pilots on the need to maintain precise course guidance while executing nonprecision approaches. Had the flightcrew been given this guidance, perhaps they would have recognized the need to abandon

20 On May 26, 1994, all airplanes operating under 14 CFR Part 121 will be required to record at least 11 parameters on the onboard digital flight data recorders rather than 5 parameters. The following parameters, at a minimum, will be recorded: time, altitude, airspeed, vertical acceleration, microphone keying, pitch, roll, longitudinal acceleration, control column or pitch control surface position, and engine thrust of each engine.
the approach before they joined the localizer so close to the runway and the incident could have been avoided. The company provided adequate guidance to pilots executing precision approaches and directed them to maintain precise guidance on the localizer/glide slope and to execute an immediate missed approach if they encounter localizer or glide slope deviation outside of specified safety limits.

Since the time of this incident, as well as an accident involving a USAir Boeing 737-400 that occurred in New York's LaGuardia Airport on September 20, 1989, USAir has modified its procedures and flightcrew training program. It has increased the training time in nonprecision approaches, in general, and the use of VDPs, in particular. The use of VDPs was also incorporated during training in flight simulators. USAir standardized the checklists of the various aircraft types in its fleet and increased internal oversight of its FAA-designated check airman program.

The Safety Board believes that this incident illustrates the need for USAir to revise further its operating procedures and training curriculum to emphasize the importance of maintaining precise course control in the execution of nonprecision approaches. Further, the Safety Board believes that other carriers may also lack such guidance to their pilots. Therefore, the Safety Board believes that the FAA should direct its principal operations inspectors to determine whether airlines they surveil require pilots to execute a missed approach when they encounter full-scale localizer deflection inside the final approach fix on a nonprecision approach and to require airlines that do not employ such procedures or provide such guidance to do so.

3. CONCLUSIONS

3.1 Findings

1. The crew members of USAir 105 were qualified in accordance with applicable FARs.

2. The MCI traffic controllers were qualified to perform their duties in accordance with applicable rules and FARs.

3. No preexisting defects were found in the airplane's structure, systems, or powerplants that could have contributed to the incident.

4. Weather factors were not causal to the incident.

5. The flight crew members did not adequately review the approach charts in advance of their execution of the localizer back course approach to runway 27.

6. The flight crewmembers were unaware of the availability of several elements helpful in the execution of the localizer back course approach.

7. The flightcrew's failure to abandon the approach, following their inadequate preparation for the execution of that approach, caused the incident.

8. The first officer's misidentification of lights he believed to be associated with runway 27 influenced the captain's subsequent misidentification of lights.

9. The flightcrew and the FAA inspector were unaware of the application of the regulation governing VDPs.

10. There was no information on the pertinent approach chart regarding the existence of potentially confusing lights along the approach path to runway 27, although such information was present on approach charts for runways at other airport.

11. The MCI air traffic controllers failed to provide accurate weather information to the flight crew of USAir 105, failed to vector the airplane to join the localizer outside the final approach fix and committed other errors in handling the flight, which contributed to the incident.

12. The FAA inspector conducting an en route inspection of USAir 105 did not inform the crewmembers of the errors they were committing in their planning and execution of the localizer back course approach.

13. USAir did not require its pilots to execute, and the flightcrew of USAir 105 did not execute, a missed approach when they encountered full-scale localizer deflection inside the final approach fix on a nonprecision approach.

3.2 Probable Cause

The National Transportation Safety Board determines that the probable cause of this incident was the flightcrew's failure to adequately prepare for and execute a nonprecision approach and their subsequent premature descent below minimum descent altitude. Contributing to the cause of the incident was the inadequate and deficient services provided to the flightcrew by air traffic control personnel.
4. RECOMMENDATIONS

As a result of its investigation, the Safety Board recommends that the Federal Aviation Administration:

Solicit reports from pilots about potentially confusing lights or other features near runways associated with instrument approach charts that do not display cautionary warnings on those features and require that the approach charts be revised to incorporate the needed warnings. (Class II, Priority Action) (A-90-124)

Modify the functional statement of the Federal Aviation Administration Office of Safety Quality Assurance and provide sufficient resources to it to make it capable of providing effective quality assurance and safety oversight of the air traffic control system (Class II, Priority Action) (A-90-125)

Require that inspectors have current instrument approach charts accessible to them during the conduct of en route inspections. (Class II, Priority Action) (A-90-126)

Review the training, policies and procedures regarding en route flight inspections and revise them to increase the likelihood that FAA inspectors will monitor adequately crew performance and inform the crew, as necessary, when violations of Federal Aviation Regulations or unsafe practices have occurred. (Class II, Priority Action) (A-90-127)

Incorporate requirements for Visual Descent Points in Federal Aviation Regulations (FAR) Part 135, Air Taxi Operators and Commercial Operators, similar to FAR Part 121.651(c)(4). (Class II, Priority Action) (A-90-128)

Issue an Air Carriers Operations Bulletin directing principal operations' inspectors to urge air carriers to ensure that flightcrews are cognizant of the purpose of Visual Descent Points and to include approaches with Visual Descent Points in their simulator training. (Class II, Priority Action) (A-90-129)

Provide site adaptation guidance to encourage modification of Minimum Safe Altitude Warning parameters, as appropriate, to minimize the extent of inhibit areas. (Class II, Priority Action) (A-90-130)

Direct principal operations inspectors to verify that the airlines they surveil have clearly established stabilized approach and missed approach procedures for nonprecision approaches, such as full-scale deflection of the localizer needle when the airplane is inside the final approach fix. (Class II, Priority Action) (A-90-131)
As a result of its investigation, the Safety Board recommends that the Federal Aviation Administration and the National Weather Service:

Require the acknowledgement of the transmission and receipt of all weather messages exchanged between an FAA air traffic control facility and the National Weather Service at airports where weather information is regularly exchanged between the two entities, to include the time of receipt and the identity of the person receiving the information. Further, the exchange of such weather messages should occur over recorded telephone lines or recorded electronic transmission means, with the recordings retained for a reasonable amount of time. (Class II, Priority Action) (A-90-132)

BY THE NATIONAL TRANSPORTATION SAFETY BOARD

/s/ James L. Kolstad
Chairman

/s/ Susan Coughlin
Vice Chairman

/s/ John K. Lauber
Member

/s/ Jim Burnett
Member

/s/ Christopher A. Hart
Member

September 11, 1990
APPENDIX A

INVESTIGATION AND HEARING

1. Investigation

The National Transportation Safety Board was notified of the incident about 2300 eastern daylight time on September 8, 1989. An investigator from its Kansas City Regional Office was dispatched immediately. An investigative team was dispatched from its Washington headquarters to the scene the following morning. Investigative groups were established for: operations, air traffic control, meteorology, and digital flight data recorder. Specialists in human performance and air traffic control radar were assigned to the investigation thereafter. Parties to the investigation were: the Federal Aviation Administration, USAir, Inc., and the Airline Pilots Association.

2. Public Hearing

There was no public hearing. Recorded interviews of the flight crew of USAir 105, the FAA inspector who occupied the cockpit observer's seat on the flight, and the MCI air traffic controllers who worked with the flight and who supervised the MCI facility were held on November 28 and 30, 1989.
APPENDIX B

AIR TRAFFIC CONTROL TRANSCRIPT

INFORMATION: Tower Coordinator transcription concerning the incident involving USA105, Boeing 737, on September 9, 1989 at 0235 UTC

Air Traffic Manager
Kansas City International Tower

This transcription covers the time period from 0206 UTC on September 9, 1989, to 0300 UTC on September 9, 1989.

Agencies Making Transmissions

<table>
<thead>
<tr>
<th>Agency</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas City International Tower Coordinator</td>
<td>cc</td>
</tr>
<tr>
<td>Kansas City International Tower Local Control</td>
<td>LC</td>
</tr>
<tr>
<td>Kansas City International Tower East Radar</td>
<td>ER</td>
</tr>
<tr>
<td>Kansas City International Tower East Handoff</td>
<td>EHO</td>
</tr>
<tr>
<td>Kansas City International Tower West Radar</td>
<td>WR</td>
</tr>
<tr>
<td>Kansas City International Tower West Handoff</td>
<td>WHO</td>
</tr>
<tr>
<td>Kansas City Center Traffic Management Unit</td>
<td>TMU</td>
</tr>
<tr>
<td>Kansas City Downtown Airport Traffic Control Tower</td>
<td>MKC</td>
</tr>
<tr>
<td>Unknown</td>
<td>UNK</td>
</tr>
<tr>
<td>US Air 105</td>
<td>USA105</td>
</tr>
<tr>
<td>Braniff 569</td>
<td>BNF569</td>
</tr>
<tr>
<td>Braniff 507</td>
<td>BNF507</td>
</tr>
<tr>
<td>Braniff 635</td>
<td>BNF635</td>
</tr>
</tbody>
</table>
Braniff five ninety seven you're number two after the ah one in position
Braniff ah five sixty nine fly runway heading runway one nine cleared for takeoff

Braniff five sixty nine cleared to roll

T-M-U

Yeah this is International with this ah twenty miles (and PAOLA)* can we come off that a little bit its killin us out there I got about ah almost two hundred miles of airspace sittin out at the runway

Okay let me ah Braniff five twenty ones my pathfinder as soon as I see what this rascal does I should be able to release you off of ah some of it I hope

Yeah get me off of it cuz it is killin us

If the supervisor will (unintelligible) if the supervisors will let me and I will get back with you

At least five miles even that much will help

Bye

Bye
APPENDIX B

(0207)

0207:09 UNK (Unintelligible)

0207:12 LC Calling tower say again you were cut out er you were cutting out

0207:23 LC Braniff five sixty nine contact departure good evening

0207:25 BNF569 Braniff five sixty nine going to departure

0207:30 BNF507 Tower Braniff five zero seven could you give us our sequence please (unintelligible) were down here at (one nine) *

0207:35 LC Braniff five zero seven yes sir you're number three

0207:39 BNF507 Okay thank you

(0208)

0208:02 UNK (Unintelligible) (continental one eighty eights)* (unintelligible)

(0209)

0209:01 LC Braniff five ninety seven at Alpha two taxi into position and hold

0209:04 BNF597 Position and hold Braniff five ninety seven
BNF635 0209:10 Braniff six thirty five next

LC 0209:11 Braniff six thirty five thats correct

LC 0209:14 Braniff six thirty five when safety permits you can taxi into position and hold behind the company

BNF635 0209:19 (Okay)* position and hold behind the company when possible six thirty five

LC 0209:27 Braniff six fifty five turn left at one of the intersections ground point eight off the runway sir

UNK 0209:33 (Unintelligible)

LC 0209:47 Braniff five ninety seven fly runway heading runway one nine cleared for takeoff

BNF597 0209:50 Runway heading one nine cleared to go Braniff five ninety seven

(0210)

LC 0210:59 Braniff five ninety seven contact departure good evening

(0211)

BNF597 0211:01 Departure good evening sir Braniff five ninety seven

LC 0211:28 Braniff six thirty five fly runway heading runway one nine cleared for takeoff
(Six)* thirty five cleared to go
Braniff five zero seven taxi into position and hold runway one nine at Alpha two
Okay position and hold Braniff five zero seven Alpha two
Air Midwest fifteen fifty nine you'll be next behind the ah Braniff seven twenty seven
Fifteen fifty nine thank you
Braniff six thirty five contact departure good evening
(Six) * thirty five good day
And Braniff six ninety fours ready on ah runway ah one nine correction niner
Braniff six ninety four runway niner fly runway heading cleared for takeoff
Runway heading ah cleared to go Braniff six ninety four
(Unintelligible)
<table>
<thead>
<tr>
<th>Time</th>
<th>Type</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0213:48</td>
<td>LC</td>
<td>Braniff five zero seven fly runway heading runway one nine cleared for takeoff</td>
</tr>
<tr>
<td>0213:53</td>
<td>BNF507</td>
<td>Braniff five zero seven rolling (unintelligible)</td>
</tr>
<tr>
<td>0213:56</td>
<td>LC</td>
<td>Air Midwest fifteen fifty nine taxi into position and hold runway one nine behind the ah seven twenty seven</td>
</tr>
<tr>
<td>0214:13</td>
<td>LC</td>
<td>Air midwest fifteen fifty nine did you copy position and hold</td>
</tr>
<tr>
<td>0214:22</td>
<td>LC</td>
<td>Air Midwest fifteen fifty nine appro-er-tower</td>
</tr>
<tr>
<td>0214:25</td>
<td>UNK</td>
<td>You been callin sixteen nineteen er</td>
</tr>
<tr>
<td>0214:30</td>
<td>AMW1559</td>
<td>Fifteen fifty nine go ahead</td>
</tr>
<tr>
<td>0214:31</td>
<td>LC</td>
<td>Yes sir taxi into position and hold runway one nine</td>
</tr>
<tr>
<td>0214:33</td>
<td>AMW1559</td>
<td>(Okay) position and hold one nine</td>
</tr>
<tr>
<td>0214:46</td>
<td>LC</td>
<td>(Go ahead) override</td>
</tr>
<tr>
<td>0214:48</td>
<td>ER</td>
<td>Runway nine no further north than runway heading please</td>
</tr>
<tr>
<td>0214:49</td>
<td>LC</td>
<td>You got it T-K</td>
</tr>
<tr>
<td>0214:50</td>
<td>ER</td>
<td>K-Y</td>
</tr>
</tbody>
</table>
Air Midwest fifteen fifty nine fly runway heading runway one nine cleared for takeoff

(Fifteen fifty nine)* cleared for takeoff

Braniff five zero seven contact departure good evening

West handoff 10-C-c

West handoff

Ah this is ah C-C we got Air Midwest ah sixteen nineteen off runway niner like to take him out about two or three miles straight east and then straight south on a one ninety heading you guys take him towards Topeka reference traffic be depart off of nineteen

Approved P-N

Thanks B-G

Would you tell east for me

Yeah I will

If are you the next one out
0215:26 BNF201 Affirmative sir

0215:27 LC Alright if Braniff two fifteen you behind your company

0215:37 BNF563 Tower this is Braniff five sixty three

0215:41 LC Alright the number one ah Braniff out there is two zero one is that correct

0215:44 BNF201 Affirm

0215:45 LC Ah Braniff two zero one taxi into position and hold one niner

0215:48 BNF201 Okay position and hold on runway one nine for Braniff two zero one

0215:51 LC Braniff six ninety four contact departure good evening

0215:54 BNF694 Good day

(0216)

0216:07 LC Air Midwest sixteen nineteen taxi into position and hold runway niner
0216:09 AMW1619 Sixteen nineteen position and hold
0216:27 LC Air Midwest sixteen nineteen *amend* your altitude maintain four thousand
0216:31 AMW1619 Okay four thousand sixteen nineteen
0216:41 LC Air Midwest sixteen nineteen fly runway heading runway niner cleared for takeoff
0216:44 AMW1619 Runway heading runway nine cleared to go sixteen nineteen
0216:47 LC Local
0216:48 EHO Hows it look for visuals from the northeast (does it look)* okay
0216:49 BNF201 Tower Braniff two zero one we've just been advised we have a passenger in handicapped passenger in the lavatory there if you need for us to clear the runway we will
0216:56 LC Who's that is that for ah Braniff two zero one
0216:58 BNF201 Yes sir
0217:00 EHO (Unintelligible) C-C
0217:01 CC C-C
0217:02 EHO Hows it look to the northeast for visuals (unintelligible) *
0217:05 CC Well I see your ah six forty nine out there fifteen northeast
0217:07 EHO Okay thats what we want to know were going to try to shove him in before that stuff comes over
0217:10 CC Alright B-G
0217:12 LC Air Midwest fifteen fifty nine contact departure good day
0217:16 AMW1559 Fifteen fifty nine to departure good day
0217:29 BNF2019 And Interantional tower Braniff two zero one we are ready now runway one nine
0217:35 LC Braniff two zero one roger continue to hold right there just a moment ma'am
<table>
<thead>
<tr>
<th>Time</th>
<th>Call Sign</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>0217:38</td>
<td>BNF201</td>
<td>Thank you sir two zero one</td>
</tr>
<tr>
<td>0217:46</td>
<td>LC</td>
<td>Air Midwest sixteen forty three taxi into position and hold runway niner</td>
</tr>
<tr>
<td>0217:49</td>
<td>AMW1643</td>
<td>Position and hold sixteen forty three</td>
</tr>
<tr>
<td>0217:53</td>
<td>LC</td>
<td>Air Midwest sixteen nineteen ah turn right heading one niner zero</td>
</tr>
<tr>
<td>0217:58</td>
<td>AMW1619</td>
<td>Right to one ninety sixteen nineteen</td>
</tr>
<tr>
<td>0218:00</td>
<td>LC</td>
<td>Air Midwest sixteen nineteen amend your altitude maintain four thousand and contact departure good evening</td>
</tr>
<tr>
<td>0218:05</td>
<td>AMW1619</td>
<td>Four thousand over to departure good evening</td>
</tr>
<tr>
<td>0218:28</td>
<td>LC</td>
<td>Air Midwest sixteen forty three runway niner fly runway heading cleared for takeoff</td>
</tr>
<tr>
<td>0218:33</td>
<td>AMW1643</td>
<td>Runway heading cleared to go Air Midwest sixteen forty three</td>
</tr>
<tr>
<td>0218:44</td>
<td>LC</td>
<td>Braniff two zero one fly runway heading runway one nine cleared for takeoff</td>
</tr>
<tr>
<td>Time</td>
<td>Frequency</td>
<td>Transmitter</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>0218:47</td>
<td>BNF201</td>
<td>Runway heading and cleared to go on runway one nine for Braniff two zero one</td>
</tr>
<tr>
<td>(0219)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0219:20</td>
<td>AAL454</td>
<td>Tower American four fifty four is with you for one niner</td>
</tr>
<tr>
<td>0219:23</td>
<td>LC</td>
<td>American four fifty four International tower runway one nine cleared to land wind estimated one zero zero at ah ten knots</td>
</tr>
<tr>
<td>0219:28</td>
<td>AAL454</td>
<td>Cleared to land on ah one nine American four fifty four</td>
</tr>
<tr>
<td>0219:33</td>
<td>LC</td>
<td>Air Midwest sixteen forty three contact departure good evening</td>
</tr>
<tr>
<td>0219:36</td>
<td>AMW1643</td>
<td>(Sixteen forty three)* good night</td>
</tr>
<tr>
<td>(0220)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0220:05</td>
<td>LC</td>
<td>Braniff two zero one contact departure good evening</td>
</tr>
<tr>
<td>0220:08</td>
<td>BNF201</td>
<td>Two zero one good night sir</td>
</tr>
<tr>
<td>0220:46</td>
<td>BNF649</td>
<td>Tower Braniff six forty nine with you</td>
</tr>
</tbody>
</table>
for one nine

0220:48 LC Braniff six forty nine International tower number two

0220:51 BNF649 How far are we behind American

0220:53 LC Just exactly three miles

0220:55 WHO C-C west handoff

0220:57 cc c-c

0220:57 WHO Is your BRITE working

0220:58 cc Yeah

0220:58 WHO Alright thanks P-N

0220:59 cc (B-G)*

0221:53 ER Descend and maintain three thousand reduce speed to two
0221:58 EHO East handoff

(0222)

0222:00 CC (This is)* C-C we need a slot a slot behind ah Midway two twenty five for a couple departures

0222:05 EHO D-W

0222:05 CC B-G

0222:21 LC Braniff six forty nine runway one nine cleared to land

0222:23 BNF649 (Braniff)* six forty nine cleared to land

0222:36 LC American four fifty four turn left that next high speed ground point eight off the runway

0222:40 AAL454 (Four fifty four)*

(0223)

0223:44 LC International are out of service however beginning to hear the wind and
it looks like the front is approaching from the west I have no idea what it is

0223:59 MID225 (Tower)* Midway two twenty five about five out landing clearance

0224:03 LC Midway two twenty five runway one nine you're cleared to land I say again I have no wind instruments they are out of service it does appear that the wind is ah to be honest from the flags in front of the tower they're coming straight from the west they're standing straight out

0224:15 MID225 Two twenty five thank you

0224:16 LC (Alright)* Braniff six forty nine turn left that next high speed intersection ground point eight off the runway

0224:22 BNF649 (Six)* forty nine

0224:25 PAT130 Tower PAT one three zero were about ah five miles out for one nine

0224:30 LC PAT one three zero International tower continue for runway one nine you're following a Midway D-C nine (unintelligible) a mile final Braniff six forty nine I need you to tell me when you are clear of the runway
0224:43 LC
Braniff six forty nine are you clear of the runway

0224:48 LC
Braniff six forty nine are you clear of the runway

0224:54 BNF215
(Were get) * Were getting strong winds on the approach end of the runway

0224:56 LC
Midway two twenty five go around Midway two twenty five go around

(0225)

0225:02 MID225
Two twenty five is gone

0225:08 BNF215
(This is)* Braniff two fifteen at the end of the runway were getting strong winds down here

0225:12 EHO
Handoff east

0225:15 CC
This is C-C Braniff Midway two twenty five went around he'll be on about a one seventy heading three thousand coming to ya

0225:21 EHO
Okay ah put him on a heading to miss the box D-W
(Unintelligible) were gonna have to go Downtown also

Alright Midway one thirty

Can you turn him

One seventy and three thousand give him to east

Ah can you turn further left to miss the box to ninety

Twenty five one seven zero

One seven zero climb and maintain three thousand for PAT one thirty

Three thousand for PAT one ah three zero

Midway two twenty five you have instructions for us

Midway two twenty five yes sir. I’m sorry I had to send you around but I couldn’t see whether the other aircraft was clear of the runway and I couldn’t get an acknowledgement climb and maintain
three thousand and you can turn left heading zero

0226:00 EHO Handoff

0226:01 cc Midway two twenty five will be a zero nine zero heading three thousand coming to you

0226:03 EHO D-W

0226:04 CC B-G

0226:13 LC Midway ah two twenty five contact de departure on one two six point six

0226:24 MID225 (Twenty)* six six Midway two twenty five good day

0226:26 LC Good evening

0226:29 LC The R-V-R for runway one nine touchdown two thousand eight hundred midfield two thousand eight hundred roll out one thousand eight hundred

0226:39 LC PAT one three zero maintain three thousand fly heading one seven zero contact approach control on one two six point six good evening
APPENDIX B

0226:46 PAT130 Twenty six point six

0226:49 EHO (Unintelligible) handoff

0226:50 cc PAT one thirtys on a one seventy three thousand coming at cha B-G

0226:53 EHO PAT one thirty okay at three were going to climb Midway to four D-W

0226:57 cc Nah I think I think PAT wants to go to Downtown too

0227:00 EHO Alright

0227:01 cc B-G

0227:01 EHO D-W

0227:10 BNF695 Kansas City Tower Braniff six ninety five just outside of PENZZ inbound for I-L-S one nine

0227:17 LC Braniff six ah ninety five International Tower theres heavy rains at the airport the wind is estimated two seven zero degrees two zero gust to three eight do you still want to continue with the approach
<table>
<thead>
<tr>
<th>Time</th>
<th>Code</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>0227:27</td>
<td>BNF695</td>
<td>Thats negative lets go somewhere else and wait</td>
</tr>
<tr>
<td>0227:28</td>
<td>UNK</td>
<td>(Unintelligible)</td>
</tr>
<tr>
<td>0227:29</td>
<td>LC</td>
<td>Standby right there sir and ah</td>
</tr>
<tr>
<td>0227:33</td>
<td>LC</td>
<td>Go ahead override is this ah</td>
</tr>
<tr>
<td>0227:34</td>
<td>EHO</td>
<td>Yeah the winds are from the weather service are from the west we need to go to two seven have C-C call us so we can coordinate (right away) *</td>
</tr>
<tr>
<td>0227:39</td>
<td>LC</td>
<td>I don't care I Braniff ah six fifty nine</td>
</tr>
<tr>
<td>0227:46</td>
<td>LC</td>
<td>Don't hang up on me Braniff six fifty nine wants to go around three thousand where do you want him</td>
</tr>
<tr>
<td>0227:51</td>
<td>EHO</td>
<td>Braniff six fifty nine just leave him runway heading at three</td>
</tr>
<tr>
<td>0227:54</td>
<td>LC</td>
<td>Alright</td>
</tr>
<tr>
<td>0227:55</td>
<td>EHO</td>
<td>D-W</td>
</tr>
<tr>
<td>0227:55</td>
<td>LC</td>
<td>From there</td>
</tr>
<tr>
<td>Time</td>
<td>Call</td>
<td>Text</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>0227:57</td>
<td>EHO</td>
<td>Ah wheres he at right at south end of one nine</td>
</tr>
<tr>
<td>0227:58</td>
<td>LC</td>
<td>No hes at PENZZ right now hon</td>
</tr>
<tr>
<td>0228:00</td>
<td>EHO</td>
<td>Oh okay okay yeah ah right now leave him straight at three thousand Ill get back with ya</td>
</tr>
<tr>
<td>0228:05</td>
<td>LC</td>
<td>Alright hundred seventy heading hows that</td>
</tr>
<tr>
<td>0228:06</td>
<td>EHO</td>
<td>Sounds good D-W</td>
</tr>
<tr>
<td>0228:10</td>
<td>LC</td>
<td>And the wind reported from the weather bureau again is estimated as two six zero degrees two four knots gust three niner</td>
</tr>
<tr>
<td>0228:16</td>
<td>BNF695</td>
<td>Ah Braniff six ninety five we'd like to go ahead and execute a missed approach ah like new, instructions we'll go out and wait till it passes over the field</td>
</tr>
<tr>
<td>0228:23</td>
<td>LC</td>
<td>Six ninety five yes sir turn left heading one seven zero climb and maintain three thousand and maintain three thousand and change back to approach on one two six point six</td>
</tr>
</tbody>
</table>
APPENDIX B

0228:30 BNF695 Twenty six point six hundred seventy on the heading maintain three thousand Braniff six ninety five talk to ya later

0228:35 LC Bye bye

0228:46 EHO North of ya for the I-L-S one nine D-W East standby please Braniff six ninety fives on a one seventy ah East handoff go ahead

0228:55 CC This is C-C did you want to try to go two seven the winds

0228:58 EHO Yeah

0228:59 CC From the weather bureau is two sixty twenty four gust thirty nine

(0229)

0229:01 EHO Yeah we want to go to two seven

0229:01 CC Two sevens approved

0229:02 EHO U-S Air one oh five is being vectored for it Braniff six ninety five you still talking to him
Okay everybody's going to two seven D-W

Braniff two fifteen tower

Two fifteen

You want to take off in this ah weather here or do you want to ah wait for a minute

Standby just one second let me get ah

(Aright)*

The wind from the weather bureau is two six zero at two four gusts three niner

Ah two fifteen thats a negative on this runway here

Alright well just hold right there sir we'll see what happens here in about the next two or three minutes

Two fifteen copy
(0230)

(0231)

0231:05 CC (Unintelligible) (move over to this thing here)*

0231:07 EHO C-C east

0231:08 cc Go ahead

0231:09 EHO U-S Air one oh five wanted alternate missed approach instructions south turn turn him south to ah three if he needs it

0231:14 CC Okay one seventy (and three)*

0231:15 EHO And that will be true for all arrivals the next four arrivals (unintelligible)

0231:17 CC Okay

0231:18 EHO D-W

0231:19 LC One zero five International tower runway two seven cleared to land
APPENDIX B

whatever if you've got anybody to land they better get down

0234:52 EHO Handoff

0234:53 cc Tell Denny we lost all the lights

0234:55 EHO Runway lights

0234:57 cc All the lights south of the airport hello

0234:58 EHO All the lights south of the

0234:58 BNF215 The runway lights are on

(0235)

0235:01 LC Alright the runway lights are on but the

0235:04 cc Okay ah all we have is the runway lights taxiway lights and all that stuffs gone (Alright)* bye bye

0235:09 EHO D-W

0235:10 cc Yeah tell
0235:15 EHO East handoff
0235:16 cc Did you hear what I said to that other guy
0235:18 EHO I think I did
0235:19 cc Okay all we have is all we have is runway lights we do not have any
0235:22 EHO Approach lights
0235:23 CC Ah well we dont know if we have those or not but we dont have any taxiway lights any ah nonmovement are lights
0235:28 EHO D-W
0235:28 CC B-G
0235:36 USA105 Can you give us a vector U-S Air one oh five out of all this
0235:39 LC U-S Air one zero five yes sir change back to approach on one two six point six
USA105 Twenty six **six**

LC Braniff two fifteen the weather bureau reports the wind as two two zero at one four

BNF215 Two fifteen the wind sounds good to us but weve got a ah Continental and weve got one of our seven twos ahead of us

LC **Alright** who's number one at the approach end of ah one nine

BNF563 Braniff five sixty three and we'll take it

LC Im sorry I thought you were number two Braniff five sixty three fly runway heading runway one nine cleared for takeoff

WHO (Thats ah)* West handoff

cc This is C-C ah we've got a couple of departures comin at ya the (weather reported)* estimated the wind at two two zero at one four

WHO Two twenty at fourteen **alright**
Continental one eighty you're next behind the ah Braniff seven twenty seven is that correct

Braniff five sixty three did you copy fly runway heading runway one nine cleared for takeoff sir

Affirmative

Okay I can't see is the reason 'I ask

Yeah oh okay were on our way

Alright

I'll let you know about the highspeeds here in a second on the lighting

Yeah I don't I don't think they're ah working I can't see any on the south of the airport

Oop now they're starting to come back
Continental one eighty eight ah tower
Continental one eighty eight tower
Continental one eighty eight ah tower

C-C West
See if Continentals on yours
C-c

Hey protect U-S Air one oh five he's lost his hydraulics he's got an emergency whatever you do with your departures just keep em away from him
Okay we'll do that

P-N
Braniff five sixty three runway heading contact departure good evening
Okay we're airborne changing over good night

Good night now

Continental one eighty eight tower

And Continental one eighty eight International tower

Continents answering you this is Braniff ah two one five we're able to get around him if he doesn't want to go

He is answering me

Affirmative

Alright I'm not hearing a thing ah Continental one eighty eight Braniff two ah one five ah would you relay back to me Continental one eighty eight fly runway heading runway one nine cleared for takeoff

I think he just went over to ground now ah this is Braniff two one five again and I ah believe he wants to wait
APPENDIX B

0239:13 LC Alright

0239:18 LC Braniff just said he thought he went back to you go ahead override

0239:20 EHO (Need a strip on)* Braniff five sixty three

0239:22 LC Who

0239:23 EHO Disregard we got it on the west D-W

0239:24 COA188 Continental one eighty eight you hear this receiver or transmitter

0239:28 LC I can hear you now Continental one eighty eight da you ready to ah go sir

0239:31 COA188 We want to wait a little bit we're right in the middle of a thunderstorm the way we see it

0239:37 LC Alright ah can I get aircraft around you

0239:43 COA188 We can move here in a minute if you want us to start our engines now
0239:46 LC Braniff two fifteen you ah do you wish to takeoff sir

0239:49 BNF215 Yeah say the winds please

0239:50 LC The wind is estimated two two zero at one four knots and the flags ah in front of the tower look like they thats the way they are about from the south southwest there and theyre not standing straight out yet

(0240)

0240:02 BNF215 We'll take it Braniff two one five

0240:04 LC Alright Braniff two fifteen when you can ah fly runway heading runway one nine cleared for takeoff

0240:12 BNF215 Runway heading two fifteen here we go

0240:48 N13P Tower this is ah one three pop with you at ah two seven we're going to hold here for a little while kind of see what happens with the (unintelligible) out here

0240:54 LC One three papa okay sir just pull over to the ah northwest side there so I can get aircraft around you
0240:59 N13P That'll be fine and ah are you looking at any kind of radar up there see what it looks like eastbound

(0241)

0241:03 LC Well eastbound doesn't look bad we've ah lost our weather radar and ah our wind instruments are out also

0241:11 N13P Okay ah we'll see if we can get Flight Service here and {try to }* talk to them then

0241:16 LC The ah from what I see on the ah just the regular radar there line that came through here is about ten miles east and ah from that position it goes kinda south southwest about two thirty heading

0241:28 N13P How far south does it go can you tell

0241:30 LC Goes off my scope here in the tower but I'm only watching twenty miles

0241:34 N13P Okay thanks

0241:34 LC (Roger)*
0241:36 LC Braniff two fifteen you're in position fly runway heading runway one nine cleared for takeoff

0241:40 BNF215 Braniff two one five rolling

0241:50 LC Alright anybody else at the ah approach end of ah one nine that wants to take off

0242:00 MCA1049 Heartland ten forty nine will be ready ah we can take Alpha two when we (get to that one)*

0242:04 LC Alright Heartland ten forty nine ah

0242:06 cc Five seven

0242:08 WR C-C West

0242:09 CC C-C

0242:10 WR Braniff five sixty three at eight thousand got severe turbulence fifteen south of the airport

0242:14 CC Fifteen south of the airport severe turbulence B-G

0242:16 WR (At eight)*
(Unintelligible) Heartland ten thirty five (unintelligible) at two seven

Heartland ten thirty five roger taxi up but hold short of runway two seven

And ah ten thirty five I think we'll ah remain (in the block)* here (for awhile)*

Alright just pull over to the northwest side there and hold and ah Braniff two fifteen a company jet fifteen south leaving eight thousand reported severe turbulence contact departure now good evening

Braniff two one five good day

Tower do you have any other reports from the two airplanes that took off

No sir ah I havent had any really reports at all except for that one Braniff he got about fifteen south a seven twenty seven leaving eight thousand he reported severe turbulence outside of that I haven't had any reports at all
Continental one eighty eight do you want to ah well lets disregard it
Midway ah one thirty do you want to try it or do you want to take off er ah just hold right there

We'd like to hold here for a while

Alright

And Heartland ten forty nine can ah is there any way you can make a one eighty or anything to get out there

Ah is there anybody behind us

Well I think there is (I think there's)* a Delta and aye ah American MD eighty

Okay we'll just we'll just hold up here with the rest of them then for ah ten forty nine

Alright
APPENDIX B
(0246)

0246:08 cc East handoff C-C

0246:12 EHO Five hundred broken

0246:14 cc Say what

0246:14 EHO Ah huh go ahead

0246:15 cc Ah do we

0246:15 EHO Bob standby

0246:17 EHO That's four and rain (oh)*

0246:22 cc West handoff

0246:30 cc (Who)*

0246:31 WR C-C West

0246:32 cc c-c
Braniff two fifteen says he wouldn't recommend any more departures off one nine for the next few minutes because of ah turbulence

Okay and did we ever tell you that the lights are back

Ah I don't know but I'll tell em

Okay thanks

(P-N)*

Tower Braniff six fifty eight

Calling tower say again

(Yeah)* Braniff six fifty eight ah sitting at the gate ah did anybody ah departing ah (look wha what's)* going on with the weather

Nobody's ah elected to take off right now ah Braniff six fifty eight ah looks like were just on the ah just about in the middle of this thunderstorm here looks like the winds died down a little bit but ah no one's elected to go right now
APPENDIX B

0247:31 BNF658 Okay just wondering what was happening we don't ah we can't ah look at the radar sittin here at the gate ah so we just wanted to find out

0247:37 LC Okay we just had ah had two two of your company go and ah just about fifteen southeast just got another report there's severe turbulence between right around eight thousand feet and he does not recommend ah people going that way

0247:51 BNF658 Is there another way of going

0247:53 LC Not really gonna have to fly into it or try and fly out of it to the east or southeast and that's where the ah severe turbulence was

0248:00 BNF658 *(Well then were not going)*

0248:01 LC *(Alright)*

0249 EHO East handoff

0249:36 CC This is C-C again what's happening with U-S Air one oh five
He has ah hydraulic problems we haven't ascertained if he's an emergency or not at any rate he's diverting into Wichita.

Oh he's going to Wichita.

That's correct.

Oh good.

D-W.

Bye.

Tower ah one three pap were gonna turn into the wind here if there's nobody real close to us kinda keep us from bumping around too much.

Alright there I've got a Heartland out there but I don't believe he's that close Heartland ah (unintelligible) close to that King Air there can he turn around (into the wind)
APPENDIX B

(0252)

0252:04 MCA1035 Ah it'll give us a second and ah we we'll make the turn here

0252:11 LC Alright

0252:11 UNK (Forward) *

0252:13 MC Ah looks like hes got enough room

0252:31 WR C-C West

0252:33 cc (Unintelligible) C-C

0252:34 WR Did anybody tell you U-S Air went to Wichita

0252:35 cc Yeah

0252:35 WR Thank you P-N

0252:36 cc Thanks

(0253)
0254:59 MCA1035 Tower ten thirty five

(0255)

0255:01 LC Yes sir go ahead

0255:02 MCA1035 This King Air in front of me is he going (southeastbound)*

0255:05 LC Yes hes ah heading towards Columbia same place you are

0255:11 MCA1035 (Oh Okay)*

0255:37 BNF351 Tower this is Braniff three fifty one

0255:39 LC Three fifty one yes sir go ahead

0255:41 BNF351 Yeah were number three out here in line and were gonna have to go back to the gate ah for gas I don't know if theres anyway you could work that out where we could get around these two guys in front of us or not
Okay is there anyway that ah what are you on are you on Alpha \texttt{taxiway}.

Thats affirm.

Alright ah how are they sitting ahead of you can you go straight up Alpha and make a right turn at the next intersection or beyond that come back down Bravo.

(Well)* we're up here about ah were just south of Alpha two now and the two airplanes that are in front of us are right at Alpha two.

Okay but you can't get by them going north on Alpha.

Nah no thes they're still northbound on Alpha.

Oh they are both still northbound on Alpha.

(Thats affirm)*

Alright ah Continental one eighty eight ah tower are you on Alpha two.
Continental one eighty eight affirmative

Okay Midway one thirty are you on Alpha two or are you on Alpha sir

Midway one thirty tower

Tower Continental one eighty eight ah Midways trying to talk to ya you hearing him at all

No sir Im not ah Continental one eighty eight ah is Midway facing north on Alpha taxiway

I may have misled you were on Alpha facing north we're we're right at the intersection of Alpha two I I'm guessing hes behind us I don't see any other airplanes

Okay Co-ah-Continental one eighty eight you are still on alpha then facing north

Affirmative
Alright ah Continental one eighty eight you can go ah pull north past Alpha two and then I'm gonna bring Midway up behind you (and then)* Ill just take you two around the loop after I can get Braniff ah turned ah back south on Bravo

(0258)

0258:05 COA188 Okay give us a second to start engines

0258:07 LC Alright and when you get it started ah Continental one eighty eight cross Alpha two and go up to the next intersection that'll be to the right that'll be Bravo two make a right turn and hold right there

0258:18 COA188 One eighty eight

0258:20 LC And Midway one thirty Im not receiving you sir but you can follow that Continental jet ah north on Alpha and then I can get that Braniff--around behind you

(0259)

0259: 04 EHO c-c

0259:06 UNK (Thats ah)*
0259:16 LC Braniff ah three fifty one tower

0259:18 EHO Local

0259:20 LC (What)*

0259:21 EHO See if (unintelligible) you get a chance look over tell us what the winds are showing up there

0259:30 LC The winds

0259:31 ER Go ahead overricie

0259:32 LC The winds show nine nine one at nine nine gusts to nine nine

0259:36 ER Yeah I know that

0259:37 LC Okay thats all I got honey

0259:40 EHO Call the weather bureau please do you have time looks like you do

0259:46 UNK I got one two three

0259:47 LC Braniff three fifty one tower
APPENDIX B

0259:50 BNF351 Three fifty one go ahead

0259:51 LC Yes sir soon as Continental and Midway move north of that taxiway to your right thats Bravo four make a right turn on that and come

(0300)

END OF TRANSCRIPT

*This portion of the recording is not entirely clear but this represents the best interpretations possible under the circumstances
I HEREBY CERTIFY that the following is a true transcription of the recorded conversations pertaining to the subject aircraft incident.

WILLIAM T. ROLF
Plans and Procedures Specialist
APPENDIX B

INFORMATION: Transcription concerning the accident involving USA105, Boeing 737, on September 9, 1989 at 0235 UTC

Air Traffic Manager
Kansas City International Tower

This transcription covers the time period from 0216 UTC on September 9, 1989, to 0258 UTC on September 9, 1989.

<table>
<thead>
<tr>
<th>Agency Making Transmissions</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas City International Tower East Arrival</td>
<td>EA</td>
</tr>
<tr>
<td>Kansas City International Tower Local Control</td>
<td>LC</td>
</tr>
<tr>
<td>US Air 105</td>
<td>USA105</td>
</tr>
<tr>
<td>Braniff 649</td>
<td>BNF649</td>
</tr>
<tr>
<td>Braniff 694</td>
<td>BNF694</td>
</tr>
<tr>
<td>Braniff 695</td>
<td>BNF695</td>
</tr>
<tr>
<td>Braniff 563</td>
<td>BNF563</td>
</tr>
<tr>
<td>Midway 225</td>
<td>MID225</td>
</tr>
<tr>
<td>American 454</td>
<td>AAL454</td>
</tr>
<tr>
<td>Northwest 1187</td>
<td>NWA1187</td>
</tr>
<tr>
<td>Air Midwest 1643</td>
<td>AMW1643</td>
</tr>
<tr>
<td>PAT 130</td>
<td>PAT130</td>
</tr>
<tr>
<td>D-H-L 408</td>
<td>DHL408</td>
</tr>
<tr>
<td>Commander N477CA</td>
<td>N477CA</td>
</tr>
</tbody>
</table>
I HEREBY CERTIFY that the following is a true transcription of the recorded conversations pertaining to the subject accident.

WILLIAM T. KOLF
Plans and Procedures Specialist
(Title)
Descend and maintain three thousand

Six forty nine down to three

Departure Braniff six ninety four passing three thousand for six er correction ten

Braniff six ninety four departure radar contact maintain six thousand on your climb out

Okay maintain six Braniff six ninety four

Midway two twenty five fly heading two six zero

Two sixty degree Heading for Midway two twenty five

Any chance for lower for American four fifty four

American four fifty four descend and maintain five thousand

Down to five thousand American four fifty four
Braniff six ninety four turn right heading one one zero climb and maintain one five thousand

One one zero up to one five thousand six ninety four

American four fifty four the airport nine o'clock four miles do you have it in sight

Got it in sight American four fifty four

American four fifty four roger

Braniff six forty nine turn right heading of three three zero you're number two for the airport

Ah six forty nine right turn to three two zero you say

Heading three three zero for Braniff six forty nine

Okay we're not going to be able to do that for very long

It's only gonna be a couple miles
American four fifty four descend and maintain four thousand

Down to four thousand American four fifty four

Midway two twenty five descend and maintain three thousand

Three thousand Midway two twenty five

Braniff six ninety four turn back left heading zero nine zero

Zero nine zero Braniff six ninety four

American four fifty four turn left heading of two three zero

Left two three zero American four fifty four

American four fifty four turn left heading of two two zero

Ten thousand we got the information

Blocked
American four fifty four turn left heading two two zero

Two zero American four fifty four

American four fifty four descend and maintain two thousand six hundred

Two thousand six hundred American four fifty four

Northwest eleven eighty seven roger plan a visual approach runway one niner

Visual to one nine roger

Braniff six forty nine turn left heading two seven zero that's your traffic off to your left at your nine o'clock and two miles west bound

Six forty nine left to two seventy we have him

Braniff six forty nine cleared visual approach runway one niner follow that aircraft

Were how far behind him
Well you're three miles

Midway two twenty five turn right heading of three one zero

Three ten heading Midway two two five

Braniff six ninety five dercena and maintain four thousand

Down to four thousand Braniff six ninety five

American four fifty four contact International tower one two eight point two

(Four fifty)4 four good day

Braniff six ninety four contact Kansas City Center one one niner point six five

One nine six five good night

(good night)4
Midway two twenty five turn right heading of three four zero you'll be following a Braniff seven twenty seven he's at your twelve o'clock and four miles southwest bound descending out of three thousand.

Three four zero we got the Braniff.

Midway two twenty five roger cleared visual approach runway one nine to follow Braniff.

(cleared)* the approach runway one nine follow Braniff two twenty five.

Departure Air Midwest sixteen forty three through twenty four hundred for six thousand.

Air Midwest sixteen forty three departure radar contact maintain six thousand.

Six thousand sixteen forty three.

PAT one thirty fly heading of three four zero.

Three four zero (that's what we were doing)*
APPENDIX B

0220:16 EA Northwest eleven eighty seven fly heading of two five zero descend and maintain seven thousand

0220:21 NWA1187 Heading two five zero and down to seven thousand Northwest eleven eighty seven

0220:36 EA Braniff six forty nine contact International Tower one two eight point two

0220:39 BNF649 Twenty eight two six forty nine

0220:50 PAT130 PAT one three zeros' got the airfield in sight

0220:52 EA PAT one thirty roger

0220:59 EA Braniff six ninety five turn right heading of three zero zero

(0221)

0221:03 BNF695 Right turn heading three zero zero Braniff six ninety five

0221:05 EA PAT one thirty descend and maintain three thousand
0221:07 PAT130 One thirty out of seven for three thousand

0221:09 EA Air Midwest sixteen forty three climb and maintain one five thousand turn right heading of one five zero

0221:16 AMW1643 Up to one five thousand heading one five zero Air Midwest sixteen forty three

0221:20 USA105 Hey Approach US Air one zero five with you ten thousand romeo

0221:23 EA US Air one zero five roger plan a visual approach runway one niner

0221:26 USA105 Visual to one nine US Air one on five

0221:31 EA PAT one thirty there's three aircraft on final you'll be number four you're following the one at your eleven o'clock five miles turning southbound

0221:40 PAT130 (Okay)*

0221:52 EA Braniff six ninety five descend and maintain three thousand reduce speed to two one zero

0221:56 BNF695 Back to two ten down to three thousand feet Braniff six ninety five
APPENDIX B

(0222)

0222:02 EA Midway two twenty five contact International one two eight point two

0222:05 KID225 Twenty eight two two twenty five good day

0222:07 EA Good day

0222:17 EA PAT one thirty fly heading of three six zero

0222:19 PAT130 Three six zero for one thirty

0222:45 EA Braniff six ninety five turn right heading of three six zero

0222:48 BNF695 Right turn three six zero Braniff six ninety five

0222:53 EA PAT one thirty turn left heading two seven zero

0222:56 PAT130 Two seventy one three zero

0223:00 EA Northwest eleven eighty-seven descend and maintain five thousand
0223:03 NWA1187 Descend to five thousand Northwest eleven eighty seven

0223:16 EA PAT one thirty cleared visual approach runway one niner

0223:19 PAT130 One three zero visual to one niner thank you

0223:22 EA Braniff six ninety five that's your traffic ten o'clock three miles turning west bound forty five hundred descending

0223:27 BNF695 Braniff six ninety five we believe we've got him out there

0223:30 EA Braniff six ninety five roger it's a military C twelve you're cleared visual approach runway one niner to follow that aircraft

0223:35 BNF695 Six ninety five roger cleared for visual were turning our base now

0223:38 EA Roger

0223:52 EA US Air one zero five fly heading of two six zero descend and maintain seven thousand

0223:55 USA105 Two sixty on the ah heading down to seven thousand US Air one oh five
APPENDIX B

(0224)

0224:01 EA PAT one thirty contact International lower one two eight point two

0224:04 PAT130 Twenty eight two

0224:05 PAT130 Twenty eight two thank you for your help ma'am

0224:22 EA Northwest eleven eighty Seven turn right heading two seven zero

0224:26 NWA1187 Two seven zero Northwest eleven eighty seven roger

(0225)

0225:01 EA Air Midwest sixteen forty three contact Kansas City Center one one niner point six five

0225:06 AMW1643 Nineteen sixty five Air Midwest sixteen forty three

0225:22 EA Braniff six ninety five your about sixty knots faster than that traffic ahead of you I think the Tower slowed him to get some departures out
0225:28 BNF695 Okay we're gonna slow it back to our final approach speed Braniff six ninety five

0225:31 EA Roger Northwest eleven eighty seven turn right heading of three three zero descend and maintain three thousand

0225:38 Unknown Who's that for

0225:40 EA Northwest eleven eight seven fly heading of three three zero descend and maintain three thousand

0225:44 NWA1187 Three three zero and down to three thousand roger Northwest eleven eighty seven

0225:48 USA105 US Air one zero five we need to ah come about ah five degrees left

0225:52 EA US Air one ah five five degrees left approved

0225:54 USA105 (Thank you)*

0226 Braniff six ninety five contact International Tower one two eight point two
0226:06 BNF695 Twenty eight point two Braniff six ninety five good evening

0226:08 EA Good day

0226:20 USA105 US air one oh five we need another five degrees left

0226:22 EA US Air one oh five another five left approved

0226:25 USA105 (Thank you)*

0226:29 LC (RVR)* for runway one nine touchdown two thousand eight hundred and midfield two thousand

0226:34 MID225 Twenty five for three thousand ah turning east

0226:37 EA Midway two twenty five departure radar contact climb and maintain four thousand

0226:41 MID225 (Unintelligible) to four thousand Midway two twenty five

0226:44 LC Six point six good evening

0226:47 PAT130 Twenty six point six roger good day
Roger (unintelligible) override

Where's PAT going

Where's PAT going a hundred seventy heading three thousand

What's going on nobody's going to land

No I (unintelligible) can't even see the edge of the tower heavy rain

Okay

Northwest eleven eighty seven turn right heading ah three six zero plan the ILS approach runway one niner

I'm sorry you'll have to say again for eleven eighty seven

Northwest eleven eighty seven fly heading of three six zero maintain three thousand vectors ILS runway one niner

All right heading three-six zero and maintain three thousand for the ILS to one niner that weathers nearing the field now isn't it
APPENDIX B

0227:28 EA Affirmative I think it's fight over the airport (unintelligible) had two missed approaches in the last three minutes

0227:35 NWA1187 Roger

0227:38 PAT130 Kansas City one three zero we're on a missed from ah International here there that wall of water just ah covered the airport down there we it's ah not visible any more

0227:46 EA PAT one thirty roger how about the ILS one nine at Downtown get you in real quick before that er ah weather gets here

0227:51 PAT130 Yes ma'am that's what we'd love

0227:52 EA PAT ah one thirty descend and maintain two thousand six hundred fly heading of zero niner zero vectors ILS runway one nine downtown

0227:58 PAT130 (Unintelligible) down to ah two two thousand six hundred

(0228)

0228:03 EA Northwest eleven eighty seven turn left heading two seven zero
0228:05 NWA1187 Northwest eleven eighty seven
0228:07 EA Northwest eleven eighty seven turn left
 heading two seven zero
0228:11 NWA1187 Left to two seven zero Northwest eleven
 eighty seven
0228:16 USA105 Approach US Air one zero five
0228:17 EA US Air one oh five approach
0228:19 USA105 Yeah how does it look for us
0229:20 EA US Air one oh five how about runway two
 seven for you
0228:22 USA105 That's what we were going to suggest
0228:24 EA US Air one oh five descend and maintain
 three thousand fly heading two four zero
0228:26 USA105 Two four zero down to three thousand US
 Air one oh five
0228:30 EA Midway two twenty five turn right
 heading one one zero
One one zero two twenty five What do you suggest

US Air one oh five reduce speed to one nine zero

One nine zero on the speed

Northwest eleven eighty seven needs to get back we need a heading one eight zero

Northwest eleven eighty seven roger understand you need to get back turn left heading of one four zero

One four zero Northwest eleven eighty seven

PAT one thirty this will be a turn on one mile from KENZY turn right heading of one one zero

To one one zero

Approach Braniff six ninety fives back with you a go around heading one seven zero three thousand feet
0229:05 EA Braniff six ninety five turn left heading zero niner zero maintain three thousand

0229:09 BNF695 Zero nine zero maintain three thousand six ninety five

0229:11 EA PAT one thirty turn right heading one eight zero

0229:13 PAT130 Right to one eight zero one thirty

0229:15 EA US Air one oh five turn right heading of two six zero

0229:17 USA105 Two six zero US Air one zero five

0229:22 EA Midway two twenty five descend and maintain three thousand turn left heading three zero zero

0229:26 MID225 Three thousand left three zero zero when can we expect

0229:28 EA PAT one thirty turn right heading of two zero zero

0229:30 PAT130 Two zero zero for one thirty

0229:32 EA Everybody expect runway two seven International wind ah two six zero at two four gusts three nine
US Air one zero five you're five miles from ah MIZZO maintain three thousand until established on the backcourse cleared localizer backcourse runway two seven

Localizer backcourse US Air ah one zero five

Midway two twenty five turn left heading two niner zero

Two ninety heading Midway two twenty five

PAT one thirty the airport twelve o'clock five miles

One thirty (thirty's lookin)*

US Air one oh five turn left heading two four zero to intercept the backcourse

Two four zero

PAT one thirty do you have the airport in sight
0230:11 PAT130 No ma'am that we do not

0230:13 EA PAT one thirty roger you're over KENZY and can you shoot the ILS from there or do you need another turn on from the northeast

0230:18 PAT130 Oh we've got it now

0230:20 EA PAT one thirty cleared visual approach runway one niner contact Downtown tower one three three point three

0230:23 PAT130 Three point three good day

0230:25 EA Midway two twenty five turn left heading of two seven zero

0230:28 MID225 Turning two seven zero Midway two twenty five

0230:31 EA Northwest eleven eighty seven turn left heading of one one zero

0230:35 NWA1187 One one zero Northwest eleven eighty seven

0230:43 EA Braniff six ninety five turn right heading of one five zero
0230:49 BNF695 One five zero Braniff six ninety five

0230:52 USA105 Approach US Air one zero five we need alternate ah missed ah instructions

0230:55 EA US Air one zero five roger ah whatever you need southeast southeast or northeast at three thousand

(0231)

0231:03 USA105 Okay south ah three thousand

0231:05 EA Roger and tell the tower I gave that to you and contact International tower one two eight point two

0231:08 USA105 Eight two good day

0231:10 EA Braniff six ninety five turn right heading of two zero zero

0231:12 BNF695 Two zero zero Braniff six ninety five

0231:15 EA Midway two twenty five reduce speed to one seven zero

0231:17 MID225 A hundred and seventy knots Midway two twenty five
0231:20 EA Braniff six ninety five turn right heading two three zero
0231:22 BNF695 Two three zero for Braniff six ninety five
0231:24 EA Midway two twenty five turn left heading two four. zero
0231:27 MID225 Two forty heading Midway two twenty five
0231:31 EA Northwest eleven eighty seven turn left heading one zero zero
0231:34 NWA1187 One zero zero Northwest eleven eighty seven
0231:38 EA Braniff six ninety five turn right heading two four zero
0231:41 BNF695 Two four zero Braniff six ninety five
0231:43 EA All aircraft on this frequency the visibility at International Airport is one half mile if you copy ident with ah rain
0231:55 MID225 Two twenty five we can't shoot an approach with a half mile
0231:57 EA Who was that talkin
0231:59 MID225 Midway two two five

0232:00 EA Midway two twenty five climb and maintain four thousand turn left heading one two zero

0232:03 MID225 One two zero four thousand Midway two twenty five

0232:11 EA Northwest eleven eighty seven can you shoot it

0232:22 EA Braniff six ninety five your two miles from MI220 maintain three thousand til established on the backcourse cleared localizer backcourse runway two seven and they are carrying a half mile at the airport now

0232:32 BNF695 Cleared for the approach ah Braniff six ninety five

0232:35 EA Northwest eleven eighty seven can you shoot the backcourse

0232:39 NWA1187 I'll tell you we need at least a mile ah we're probably 'gonna need ta go somewhere and hold out here in the clear

0232:45 EA Northwest eleven eighty seven climb and maintain five thousand
Maintain five thousand Northwest eleven eighty seven

Midway two twenty five climb and maintain four thousand

Four thousand we'd like to wait it out for a little bit at least

Midway two twenty five roger and ah climb and maintain four thousand

Four thousand two twenty five one twenty heading

Braniff six ninety five were gonna have ta have a mile also we'd like a left turn back out somewhere

Braniff six ninety five turn left heading one one zero climb and maintain four thousand

To one one zero up to four thousand Braniff six ninety five thank you

Midway two twenty five proceed direct Napolean hold north maintain ah four thousand you want a higher altitude
Ah no for now this is good Napoleon hold north Midway two twenty five

(Roger)*

Northwest eleven eight seven proceed direct Napoleon maintain ah five thousand hold north of Napoleon one minute legs

Okay north of Napoleon at five thousand one minute legs Northwest eleven eighty seven

Braniff six ninety five climb and maintain six thousand

Six thousand Braniff ah six ninety five

Northwest eleven eighty seven turn right heading of one six zero I'll have the frequency for you in just a second

One six zero Northwest eleven eighty seven

Northwest ah eleven eighty seven Napoleon frequency one one four point zero
Well thank you

Midway two twenty five Napoleon frequency one one four point zero

We've found it

Apwrcach Midway two twenty five you want us to hold north (and the)* right hand turn

Midway two twenty five hold north of Napoleon ah right turns maintain four thousand

Right turns four thousand Midway two twenty five

Braniff six ninety five proceed direct Napoleon frequency one one four point zero hold north of Napoleon right turns maintain six thousand there will be other traffic there at four and five thousand

Okay hold north right turns ah at Napoleon Braniff six ninety five
APPENDIX B

0235:57 USA105 (Approach)* US Air one zero five were at three thousand on a missed ah we need vectors out of this weather please

(0236)

0236:02 EA US Air one oh five turn left heading one one zero climb and maintain four thousand that's the earliest I can get you out

0236:07 USA105 To one one zero and up to four thousand US Air one zero five

0236:26 EA US Air one zero five climb and maintain seven thousand

0236:28 USA105 To seven thousand

0236:31 USA105 We want to stay at three thousand US Air one zero five

0236:34 EA US Air one oh five maintain three thousand

0236:36 USA105 Okay

0236:39 NWA1187 Approach eleven eighty seven

0236:43 EA Northwest eleven eighty seven approach
0236:45 NWA1187 Yes ma'am ah hows the weather look ah west of the airport ah we get an estimate on how long its gonna take before we can ah make an approach or something

0236:52 EA Well it goes completely off my scope which is over Topeka VOR which is about forty miles west

0236:59 NWA1187 Do you have an idea of the rate of ah movement

(0237)

0237:02 EA US Air one oh five climb and maintain four thousand for now I'll have a lower altitude for you shortly I got traffic coming off of Downtown Airport be climbing to three thousand

0237:09 USA105 Okay we want to stay at three we lost hydraulics A and B ah we've got an emergency situation

0237:13 EA US Air one oh five turn left heading three six zero

0237:16 USA105 Left to three six zero US Air one zero five

0237:30 DHL408 (Hello)* departure DHL four zero eight's with you out of two thousand seven hundred for three thousand
DHL four zero eight departure radar contact turn right heading zero niner zero

Right turn zero nine zero DHL four zero eight

DHL four zero eight turn right heading one five zero

One five zero DHL four zero eight

DHL four zero eight climb and maintain one five thousand

Out of three for one five thousand four zero eight

DHL four zero eight turn right heading of one five zero

We're in a right turn to one five zero four zero eight

US Air one zero five I can turn you back out to the east now ah turn back right heading of zero eight zero
0238:23 USA105 Zero eight zero okay that sounds good
0238:25 EA And ah wha what do you need right now do do you know yet
0238:28 USA105 No we dont know we just want to get out of this so we can evaluate the situation
0238:32 EA US Air one oh five roger turn back right heading of zero niner zero maintain three thousand
0238:36 USA105 Zero niner zero and three thousand
0238:38 MID225 Midway two twenty five entering holding at ah thirty eight
0238:41 EA Midway two twenty five roger and there will be other traffic there holding with you at five thousand
0238:45 HID225 Yeah we see em no problem
0238:51 NWAll87 Northwest eleven eighty seven entering the hold ten mile legs okay
0238:54 EA Affirmative ten mile legs will be fine
0238:56 NWAll87 Thanks
How about ten mile legs for Braniff ah six ninety five

Braniff six ninety five ten mile legs for you is will be fine also

Okay thank you

Braniff five sixty three one nine zero heading .two point three for six

Braniff five sixty three departure radar contact

Twenty five ten mile

Braniff five sixty three contact approach on one two four point seven

Twenty four seven

Ten mile legs for Midway two twenty five

Midway two twenty five affirmative ten mile legs for you too
0239:26 USA105 And approach can you ah get current weather at Wichita for us

0239:30 EA Affirmative I’ll get current weather at Wichita

0239:32 USA105 (Thank you)*

0239:33 EA DHL four zero eight altitude amendment maintain niner thousand on your climbout please

0239:36 DHL408 We’ll stop it at niner thousand four zero eight

0239:45 EA DHL four zero eight turn right heading of one six zero

0239:49 DHL408 Okay ah a right turn to one six zero four zero eight

(0240)

0240:12 EA Wichita weather six thousand correction Wichita weather six hundred scattered estimated five thousand broken visibility eight the wind one niner zero at seven

0240:34 MID225 Approach two twenty five I just caught the last part of that was that the weather at Kansas City
That was Wichita's weather

Roger

Okay say again Wichita weather

Wichita weather six hundred scattered estimated five thousand broken visibility eight the wind one niner zero at seven

US Air ah one zero five we'd like tc 90 to Wichita please

US Air one oh five turn right heading two one zero maintain three thousand for now

Two one zero and ah three thousand

US Air one oh five there's traffic twelve o'clock five miles northbound at four thousand

Okay we got ah traffic in sight

Roger there's traffic about five miles behind um at five thousand
BNF695 Braniff six ninety five's Napoleon there had Napoleon at four zero past the hour six thousand feet entering the hold

EA Braniff six ninety five roger

EA US Air one oh five turn right heading of two two zero

USA105 Two two zero US Air one zero five

EA Midway two twenty five time now zero two four one expect further clearance at zero three one five

MID225 Okay we'll expect further clearance three one five Midway two twenty five

EA Northwest eleven eighty seven time now zero two four one expect further clearance at zero three two five

EA Zero three five two five further clearance ah Northwest eleven eighty seven

(B0242)

EA Braniff six ninety five time now zero two four two expect further clearance at zero three three five
Zero three three five Braniff six ninety five

US Air one zero five climb and maintain one five thousand and what's the altitude request down to Wichita

One five oh ah well let's say ah maybe ah ten thousand

Okay US Air one zero five maintain one zero thousand climb and maintain one zero thousand

We'll climb and maintain ten thousand for now we've got to evaluate a few things here

US Air one zero five roger

DHL four zero eight maintain niner thousand the center will have higher altitude for you you can contact Kansas City Center one one niner point six five

Kansas City on one nineteen sixty five maintaining niner thousa'nd DHL four zero eight good night

Good night
0243:29 EA US Air one zero five turn back left heading one niner zero keep you well clear of that weather

0243:33 USA105 One nine zero US Air one zero five

(0244)

(0245)

0245:04 BNF695 And approach Braniff six ninety five could we bother you for Des Moines weather please

0245:08 EA Braniff six ninety five Des Moines weather stand by and I'll get it for you

0245:11 BNF695 Oh thank you

0245:13 N477CA Four seven seven Charlie alpha is with you seven thousand looking for lower

0245:17 EA Commander four seven seven Charlie alpha roger fly heading of three zero zero descend and maintain four thousand vectors ILS three circle to runway one at downtown

0245:28 N477CA Yes ma'am but I'm unable to ILS three with this aircraft
Okay, what do you need

Ah VOR twenty one ILS one nine or maybe a visual looks like we might get a visual from here

(Unintelligible) Okay they there down to three miles in thunderstorms and rain and fog ah proceed direct Riverside and we'll check it out when you get closer in

That's fine and still at seven thousand

Ah no ah Commander four seven seven charlie alpha descend and maintain four thousand

Four thousand thank you

US Air one zero five turn back right heading two one zero

Two one zero US Air one zero five

Commander four seven seven charlie alpha downtown weather sky partially obscured estimated ceiling two thousand overcast visibility three thunderstorms rain fog temperature seven three the wind two niner zero at one five gust two five altimeter two niner eight one
Okay I'll I'll try to make a contact into ah twenty one 1'11 let you know when I got it

Roger

Braniff six ninety five Des Moines weather measured ceiling five hundred broken visibility one five ah disregard that Braniff ah ah Des Moines weather measured ceiling five hundred broken one thousand five hundred overcast visibility four rain and fog the wind three six zero at seven altimeter two niner eight one

Okay I got it thank you very much

Roger

Approach what are the ah conditions at ah the airport now'

The International Airport indefinite ceiling five hundred sky obscured visibility one half thunderstorms heavy rain showers the wind two five zero at two two gust three eight

Okay thank you
And approach Braniff ah six ninety five we're gonna have to go to Tulsa

Braniff six ninety five fly heading of two two zero maintain six thousand

Two two zero maintain six thousand Braniff six ninety five thank you

Braniff six ninety five what altitude are you requesting down to Tulsa

How about nineteen thousand for Braniff six ninety five

Braniff six ninety five roger climb and maintain one five thousand

Up to one five thousand Braniff six ninety five

Approach ah we need to get Wichita here as soon as we can get ah through this hole up here

Is that US Air one oh five

That's correct
0248:06 EA US Air one oh five roger ah I can clear you direct right now if that this that heading would probably put you in a little bit of weather just west of Inaustrial

0248:13 USA105 That's affirmative we're showing a hole up here about ah oh thirty miles ah we'll have to take a right turn through there in about thirty miles

0248:21 EA US Air one oh five deviate as necessary when able proceed direct Wichita

0248:25 USA105 Wichita when able US Air one oh five

0248:40 EA Braniff six ninety five youre cleared to Tulsa fly heading of two two zero for radar vectors maintain one five thousand

0248:47 BNF695 Okay heading two two zero for Braniff six ninety five and up to one five thousand correct

0248:51 EA Affirmative

0248:52 USA105 Approach US Air one zero five

0248:54 EA US Air one oh five approach
APPENDIX B

0248:55 USA105 Okay we need seven thousand that's about all this thing will do right now

0248:58 EA US Air one oh five roger maintain seven thousand

0249:00 USA105 Seven thousand US Air one zero five

0249:04 NWA1187 And Northwest eleven eighty seven we'd like to get clearance to Wichita go there and land

0249:09 EA Northwest eleven eighty seven fly heading two three zero for now maintain five thousand

0249:14 NWA1187 Two three zero maintain five thousand Northwest eleven eighty seven

0249:19 MID225 (This is)* Midway two twenty five could I bother you for Tulsa weather

0249:22 EA Midway two twenty five standby and I'll get it for ya

0249:34 MID225 (Sorry)* two twenty five make that Topeka weather

0249:36 EA Roger stand by and I'll get it for ya

0249:58 EA Braniff six ninety five contact Kansas City Center one two five point five
(0250)

0250:02 ENF695 Twenty five fifty five for Braniff six ninety five we'll see ya later

0250:05 EA Roger

0250:22 EA Northwest eleven eighty seven climb and maintain one one thousand

0250:25 NWA1187 Climb to one one thousand Northwest eleven eighty seven (thank you)*

0250:40 USA105 Approach US Air one zero five

0250:42 EA US Air one zero five approach

0250:44 USA105 Yeah we ah are not! romeo equipped tonight ah what's our approximate distance from here to ah Wichita

0250:51 EA Stand by and I'll find out for you

0250:52 USA105 Thank you

0250:55 Unknown About one sixty
Unknown About a hundred and sixty

Center departure east side

Northwest eleven eighty seven Tulsa weather two five thousand scattered visibility one five thousand the wind one seven zero at one five altimeter two nine seven six

Okay thanks for the information ah Wichita is where were going to be ah requesting the clearance to please

Wichita weather stand by and I'll get that for ya

Yes ma'am

Northwest eleven eighty seven what altitude are you requesting to Wichita

Ah we were just looking at it ah oh eighteen ah one nine oh two one oh

Roger

Ah US Air one oh five approximately a hundred and fifty nautical miles
0251:52 USA105 One fifteen or one five zero

0251:54 EA One five zero

0251:55 USA105 (Thank you)*

0251:59 EA Northwest eleven eighty seven Wichita weather six hundred scattered estimated five thousand broken visibility eight wind one niner zero at seven

(0252)

0252:09 NWA1187 Ah thank you ma'am eleven eighty seven ah (okay)* one nine oh will be fine

0252:14 EA Roger

0252:23 EA And Midway two twenty or five for you Topeka weather indefinite ceiling eight hundred sky obscured visibility five eighths heavy thunderstorms wind three two zero at eight altimeter two niner seven eight

0252:35 MID225 Thank you two twenty five
0252:40 EA Commander four seven seven charlie alpha descend and maintain three thousand

0252:43 N477CA Out of four for three seven Charlie alpha

0252:51 EA US Air one zero five contact Kansas City Center one two five point five five

0252:55 USA105 (Point)* five five twenty five fifty five was it

0252:57 EA Yes sir one two five point five five

0252:59 USA105 Twenty five fifty five so long

0253:01 EA So long

0253:12 EA Northwest eleven eighty seven climb and maintain one five thousand

0253:28 EA Northwest eleven eighty seven correction on the altitude maintain one four thousand

0253:33 NWA1187 Okay I'm ah we're another radio there could you say that again please for eleven eighty seven
0253:38 EA Northwest eleven eighty seven climb and maintain one four thousand

0253:42 NWA1187 One four thousand thank you we’re out of one one

0253:44 EA Northwest eleven eighty seven fly heading of two zero zero

0253:47 NWA1187 Two hundred degrees

0253:50 EA Northwest eleven eighty seven contact Kansas City Center one two five point five five

0253:54 NWA1187 Two five five five thanks for your help

0253:56 EA (Roger)*

(0254)

0254:01 EA Braniff six ninety five contact Kansas City Center one two five point five five

0254:14 EA Midway two twenty five that weather's about twelve miles west of ya now moving east
Visibility picking up any on the field yet

Ah negative visibility's still one half mile thunderstorms heavy rain showers

Okay ah it oughta be passing though here shortly then I guess

Well it might be passing through but it's an awful big one it goes completely off my scope to the west and that's about forty miles West

Okay

Departure Braniff six fifty eight

Braniff six fifty eight departure

We're on the ground at Kansas City and when you have time we have a question (for you)*

Braniff six fifty eight go ahead with the question

Ah we're unable to use our radar the way we're pointed on the ground ah we're trying to get down to St. Louis
APPENDIX B

ah how long does it look like according to your radar this ah line of weather's going to be ah keep the field closed

0255:24 EA
I think it goes about ah sixty miles west of the airport ah and then its going to break up a little bit ah it is moving east ah fairly rapidly

0255:34 BNF658
Okay any idea on time ah how long it might take

0255:40 EA
Maybe about forty five more minutes

0255:42 BNF658
(We sure appreciate it)*

(0256)

0256:03 N477CA
Seven chat-lie alpha will take a contact into Downtown

0256:05 EA
Commander four seven seven Charlie alpha cleared contact approach to Downtown airport you're six southeast contact the tower one three three point three

0256:10 N477CA
To the tower thanks for your help we just broke out here

0256:12 EA
Okay
APPENDIX B

(0257)

(0258)

END OF TRANSCRIPT

*This portion of the recording is not entirely clear but this represents the best interpretations possible under the circumstances.
INFORMATION: Transcription concerning the accident involving USA105, Boeing 737, on September 9, 1989 at 0235 UTC

Air Traffic Manager
Kansas City International Tower

This transcription covers the time period from 0226 UTC on September 9, 1989, to 0241 UTC on September 9, 1989.

Agencies Making Transmissions

<table>
<thead>
<tr>
<th>Agency</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kansas City International Tower Local Control</td>
<td>LC</td>
</tr>
<tr>
<td>Kansas City International Tower East Arrival</td>
<td>EA</td>
</tr>
<tr>
<td>Kansas City International Tower East Handoff</td>
<td>EHO</td>
</tr>
<tr>
<td>US Air 105</td>
<td>USA105</td>
</tr>
<tr>
<td>Midway 225</td>
<td>MID225</td>
</tr>
<tr>
<td>PAT 130</td>
<td>PAT1 30</td>
</tr>
<tr>
<td>Braniff 695</td>
<td>BNF695</td>
</tr>
<tr>
<td>Braniff 215</td>
<td>BNF215</td>
</tr>
<tr>
<td>Braniff 563</td>
<td>BNF563</td>
</tr>
<tr>
<td>Continental 188</td>
<td>C0A188</td>
</tr>
<tr>
<td>King Air N13P</td>
<td>N13P</td>
</tr>
</tbody>
</table>

I HEREBY CERTIFY that the following is a true transcription of the recorded conversations pertaining to the subject aircraft accident.

William T. Kolf
WILLIAM T. KOLF
Plans and Procedures Specialist
MID225 Thousand left turn left zero nine zero

LC Roger

LC Midway ah two twenty five contact de
departure on one two six point six

MID225 Twenty six six Midway two twenty five
good day

LC Good evening

LC The FVR for runway 19 touchuown two
thousand eight hundred midfield two
thousand eight hundred rollout one
thousand eight hunared

LC PAT one three zero maintain three
thousand fly heading one seven zero
contact approach control on one two six
point six good evening

PAT130 Twenty six point six roger good day

LC Roger

LC Go ahead override

EA Where's PAT going

LC Where's PAT going a hundred seventy
heading three thousand

EA What what's going on nobodys going to
land
0226:54 BNF695 Tower Braniff six ninety five (just outside of) PENZZ ILS one nine

0226:55 LC No I I can't even see the edge of the tower heavy rain

(0227)

0227:10 BNF695 Kansas City Tower Braniff six ninety five just outside of PENZZ inbound for ILS one nine

0227:17 LC Braniff six ah ninety five International Tower there's heavy rains at the airport the wind is estimated two Seven zero decrrees two zero gust to three eight do you still want to continue with the approach

0227:27 BNF695 That's negative let's go somewhere else and wait till it moves over

0227:29 LC Alright standby right there sir and ah

0227:33 LC Go ahead override is this ah

0227:34 EHO Yeah the winds are from the west to the northwest we need to go to two seven have CC call us so we can coordinate

0227:39 LC I don't care I Braniff ah six fifty nine

0227:46 LC Don't hang up on me Braniff six fifty nine wants to go around three thousand where do you want him

0227:51 EHO Braniff six fifty nine just leave him runway heading at three
APPENDIX B

0227:54 LC Alright

0227:55 EHO DW

0227:55 LC From there

0227:57 EHO Ah where’s he at right at south end of one nine

0227:58 LC No he’s at PENNZ right now hon

0228:00 EHO Oh okay okay yeah ah right now leave him straight at three thousand I’ll get back with ya

0228:05 LC Alright hundred seventy heading nows that

0228:06 EHO Sounds good DW

0228:10 LC And the wind reported from the weather bureau again is estimated as two six zero degrees two four knots gust three niner

0228:16 BNF695 Ah Braniff six ninety five we’d like to go ahead and execute a missed approach ah like new instructions we’ll go out and wait til it passes over the field

0228:23 LC Six ninety five yes sir turn left heading one seven zero climb and maintain three thousand and maintain three thousand and change back to approach on one two six point six

0228:30 BNF695 Twenty six point six hundred seventy on the heading maintain three thousand Braniff six ninety five talk to ya later
0228:35 LC Bye bye

(0229)

0229:04 LC Braniff two fifteen you just want to sit there for a minute and see what's going on with this weather

0229:16 LC Braniff two fifteen tower

0229:18 BNF215 Two fifteen

0229:20 LC You want to take off in this ah weather here or do you want to ah wait for a minute

0229:24 BNF215 Standby just one second let me get ah

0229:27 LC (Alright)'

0229:29 LC The wind from the weather bureau is two six zero at two four gusts three niner

0229:32 BNF215 Ah two fifteen thats a negative on this runway here

0229:35 LC Alright we'll just hold right there sir we'll see what happens here in about the next two or three minutes

0229:39 BNF215 Fifteen copy

(0230)

(0231)
APPENDIX B

0231:13 USA105 Tower Us Air one zero five with you three thousand ah for the back course two seven

0231:18 LC Us Air one zero five International Tower runway two seven cleared to land the wind is estimated ah two six zero at two four gusts three niner but does appear that ah the wind is ah dying down a little bit

0231:30 USA105 Okay and our alternate missed instructions are ah three thousand south heading

0231:33 LC Yes sir one seven zero and three thousand

0231:35 USA105 Okay one seventy

(0232)

0231:36 LC Us Air ah one ze-o five let me know when you see the ah runway sir I'm gonna turn the lights up for you

0232:41 USA105 (Okay)*

0232:45 LC They're up full bright in case you need them down or anything

0232:47 USA105 (Okay)*

(0233)

(0234)
0234:23 LC US Air one zero five I can't tell for sure but it appears we have lost the lighting on the south side of the airport

0234:29 USA105 (Okay)!

0234:30 LC Looks like the ah tell the best I can see the runway lights are on but ah appears no taxiway lights no terminal lights

0234:38 USA105 (Okay) *

0234:52 LC And Air Mid Braniff two fifteen at the approach end of one nine ah did the taxiway lights just go out

0234:57 ENF215 Affirmative fer two fifteen the just taxiway the runway lights are off

0235:01 LC Alright the runway lights are on but the all the other lights are Off I think

0235:04 BNF215 Affirm

0235:05 LC (Alright) *

0235:36 USA105 Can you give us a vector US Air one oh five out of all this

0235:39 LC Yes sir one zero five yes sir change back to approach on one two six point six

0235:43 USA105 Twenty six six
Eraniff two fifteen the weather bureau reports the wind as two two zero at one four

Two fifteen the wind sounds good to us but we've got a ah Continental and we've got one of our seven two's ahead of us

Alright whose number one at the approach end of ah one nine

Braniff five sixty three we'll take it

I'm sorry I thought you were number two Braniff five sixty three fly runway heading runway one nine cleared for takeoff

Continental one eighty eight you're next behind the an Braniff seven twenty seven is that correct

Braniff five sixty three did you copy fly runway heading runway one nine cleared for takeoff sir

Affirmative

Okay I can't see is the reason I ask

Ah okay we're on our way

Alright
I'll let you know about the high speeds here in a second on the lighting.

Yeah I don't I don't think they're ah working I can't see any on the south of the airport.

Oop now they're starting to come back.

Continental one eighty eight ah tower.

Continental one eighty eight tower.

Continental one eighty eight ah tower.

Braniff five sixty three runway heading contact departure good evening.

Okay we're airborne changing over good night.

Good night now.

And Continental one eighty eight International Tower.

Continental's answering you this is Braniff ah two one five we're able to get around him if he doesn't want to go.

He is answering me.
APPENDIX B

BNF215

Affirmative

LC

Alright I'm not hearing a thing ah Continental one eighty eight Braniff two ah one five ah would you relay back to me Continental one eighty eight fly runway heading runway one nine cleared for takeoff

(0239)

BNF215

I think he just want over to ground now ah this is Braniff two one five again and I ah believe he wants to wait

LC

Alright

LC

Braniff just said he thought he went back* you go ahead override

EH0

(Ship)* Braniff five sixty three

LC

Who

EH0

Disregard we've got him on the west DW

CGA188

Continental one eighty eight you hear this receiver or transmitter

LC

I can hear you now Continental one eighty eight da you ready to ah go sir

COA188

We want to wait a little but we're right in the middle of a thunderstorm the way we see it

LC

Alright ah can I get aircraft around you
We can move here in a minute if you want us to start our engines now

Braniff two fifteen you ah do you wish to takeoff sir

Ya say the winds please

The wind is estimated two two zero at one four knots and the flags ah in front of the tower look like they thats the way they are about from the south southwest there and their not standing straight cut yet

We'll take it Braniff two fifteen

Alright Braniff two fifteen when you can ah fly runway heading runway one nine cleared for takeoff

Runway heading two fifteen here we go

Tower this is ah one three pop with you at ah two seven we're going to hold here for a little while kind of see what happens with the (unintelligible) here

One three papa okay sir just pull over to the ah northwest side there so I can aet aircraft around you
APPENDIX B

0240:59 N13P That'll be fine

(END OF TRANSCRIPT)

* This portion of the recording is not entirely clear but this represents the best interpretations possible under the circumstances
USAir Flight 105

Personnel Information

Captain George J. Neely

Captain George J. Neely, age 40, was employed by Allegheny Airlines, a corporate predecessor of USAir, on August 28, 1978. He held airline transport pilot certificate No. 1724034 with Boeing 737, airline multi-engine land and instrument helicopter type ratings and commercial privileges in airplane single-engine land and rotorcraft helicopter aircraft. He also held flight engineer's certificate No. 168402365, with turbojet ratings. His first class medical certificate, dated March 16, 1989, contained no waivers or limitations.

At the time of the incident, the captain had accrued about 14,300 flight hours, of which about 2,000 were in the Boeing 737, all of which were as pilot-in-command. In the previous 90 days, 30 days, and 24 hours, the captain had flown 110, 62.35, and 0 hours, respectively.

First Officer Michael J. Dean

First Officer Michael J. Dean, age 38, was hired by USAir on June 30, 1986. He held airline transport pilot certificate No. 301483346 with Cessna CE-500 and airplane multi-engine land type ratings, and commercial privileges in airplane single-engine land type aircraft. His first class medical certificate, dated June 27, 1989, contained no waivers or limitations.

At the time of the incident, the first officer had accrued about 7,500 total flight hours, of which about 2,300 were in the Boeing 737, all as second-in-command. In the previous 90 days, 30 days, and 24 hours, the first officer had flown 140, 84.13, and 0 hours, respectively.

MCI Air Traffic Control Personnel

Gloria J. Kirby, East Arrival Radar

Ms. Kirby, age 39, was employed by the FAA on June 22, 1973. She had previously been an air traffic controller with the US Army at Ft. Leavenworth, Kansas for 4 years. She entered duty at MCI on June 27, 1973, and became facility rated on March 24, 1976. At the time of the incident, she was a full-performance-level controller. She was medically certified to perform the duties of air traffic controller with the restriction that she wear corrective lenses for distant vision while performing those duties. While at the MCI facility, she had held the positions of Evaluation and Proficiency Development Specialist for 1 year and Area Supervisor for 5 years.
APPENDIX C

Frank D. Guy, Area Supervisor, West Arrival Radar

Mr. Guy, age 52, was employed by the FAA on February 24, 1960 and was facility-rated at MCI on November 15, 1982. He had previously been an air traffic controller with the US Navy. After his employment with the FAA, he was assigned to the Des Moines, Iowa, air traffic control tower; Sioux City, Iowa, air traffic control tower; Chicago O'Hare International Airport air traffic control facility; and the Waterloo, Iowa, air traffic control facility. At the time of the incident, he was a full-performance-level controller and area supervisor. He was medically certified to perform the duties of air traffic controller with the restriction that he wear corrective lenses for near vision while performing those duties.

Thomas A. Keller, Local Controller

Mr. Keller, age 46, was employed by the FAA on January 30, 1967. He was facility-rated at MCI on October 19, 1972. He had previously been an air traffic controller with the US Marine Corps for 4 years. After joining the FAA, he was assigned to the Indianapolis air traffic control tower; Detroit Willow Run air traffic control tower; and the Kansas City (downtown) air traffic control tower. At the time of the incident, he was a full-performance-level controller and an Evaluation and Proficiency Development specialist. He was medically certified to perform the duties of air traffic controller with the restriction that he wear corrective lenses for near vision while performing those duties.

Robert M. Smothers, Cab Coordinator/Controller-in-Charge

Mr. Smothers, age 31, was hired by the FAA on April 29, 1983. He was facility-rated at MCI on August 22, 1989. He had previously been assigned to the Omaha, Nebraska, air traffic control tower and to the Omaha TRACON. At the time of the incident, he was a full-performance-level controller. He was medically certified to perform the duties of air traffic controller with the restriction that he wear corrective lenses for near vision while performing those duties.

Sheryl L. Johnson, Flight Data/Clearance Delivery

Ms. Johnson, age 31, was hired by the FAA on September 7, 1982. She was facility-rated at MCI on May 31, 1989. She had previously been assigned to the Des Moines, Iowa, air traffic control tower; the Columbia, Missouri, air traffic control tower; and the Kansas City (downtown) air traffic control tower. She was medically certified to perform the duties of air traffic controller with the restriction that she wear corrective lenses for near vision while performing those duties.
Harold Simpson, FAA Inspector

Mr. Simpson had accrued over 8,000 hours in command of transport-category turbine aircraft at the time of the incident. He held an airline transport pilot certificate with type ratings in the following airplanes: DC-8, Boeing 727, Boeing 757, and Boeing 767. Mr. Simpson was asked by the Safety Board to provide information regarding his FAA medical certification. He declined the Safety Board's request and did not provide this information.
The airplane, registration No. N283AU, was a Boeing 737-200A, manufactured on December 19, 1983, and delivered to USAir on December 22, 1983. It has been operated by USAir continuously since that date. At the time of the incident, the airframe had accrued 17,045 total hours, and 13,991 cycles. It had received its last "C" maintenance check on June 8, 1989.

The airplane was equipped with two Pratt & Whitney JT8D-15 engines. At the time of the incident, the left engine, Serial No. 709085, had accrued a 17,493 total hours, and 3,031 hours since its last inspection. At the time of the incident, the right engine, Serial No. 709023, had accrued 17,975 total hours and 1,547 hours since its last inspection.
APPENDIX E
BAROGRAPH DATA

TIME OF RECORD: 90TH MERIDIAN. ELEVATION (M.H.): 1107
ON PRESSURE: 28.895 AM (—)
OFF PRESSURE: 29.000 AM (—)

DATE AND TIME: SEP 6 19——
DATE AND TIME: SEP 10 19——
STATEMENT REGARDING USAIR, INC. FLIGHT 105 OF 8 SEPTEMBER 1989 AT KANSAS CITY INTERNATIONAL AIRPORT, MISSOURI.

I am Harold F. Simpson, a Federal Aviation Administration Aviation Safety Inspector, Operations, assigned to the Pittsburgh Flight Standards District Office 19. My present job function is B-767 Aircrew Program Manager for the USAIR, Inc. certificate. I am an Airline Transport Pilot with ratings in DC-9, B-727, B-757, B-767 aircraft. To date, I have logged in excess of 8000 hours as pilot in command of transport category turbine aircraft.

As a part of my job function, on the evening of 8 September, 1989 I was traveling to the TWA Simulator Facility located adjacent to Kansas City International Airport, Kansas City, Missouri to perform airman certification (additional type rating) for a USAIR, Inc. B-767 Captain candidate. In compliance with Federal Aviation Administration policy and directives, I was performing and Enroute Inspection on USAIR Flight 105, (US105) of 8 September, 1989 between Greater Pittsburgh International Airport, (PIT) and Kansas City International Airport, (MCI).

US105/06 was a B-737-200, PW-JT-8-17 engines, N283AU. Pilot In Command (Captain) George Neely ATP#7241234 Second In Command (First Officer) Michael Dean #301483346 Senior Flight Attendant (A) Lori A. Kulin-Hinder Flight Attendant (B) Rebecca Kjos Flight Attendant (C) Carol Ellis Flight Attendant (D) Karen McNamara

Additional personnel on board US105/08 were the following USAIR, Inc. (USAIR) employees:

Brad Lee Dusenbery, $505723278, B-737-200 P/O PIT Howard Albert Collins, Jr. $1810225 B-737-300 F/O PIT Kenneth Smith, Customer Service Supervisor, HCI

There were 58 passengers including the USAIR personnel.

US105/08 was scheduled to depart PIT at 2015 EDT (0015 GMT) and arrive at MCI at 2128 CDT (0228 GHT). The flight was pushed off the gate at PIT at 0023 GMT and was airborne at 0038 GMT. Prior to departure, USAIR maintenance replaced the standby vertical gyro and removed the Minimum Equipment List Placard (MEL). An amended dispatch release was transmitted to the aircraft via ACARS. Two MEL Placards remained in the Aircraft Log Book.

MEL 34-20 First Officer’s radio altimeter inoperative and MEL 34-00 Aircraft: not CAT II (Category II).

Prior to departure, I performed a cabin inspection,
introduction and interview with the cabin crew and no discrepancies were noted.

Preflight, engine start, taxi, takeoff, climb and cruise for the first hour of the flight was normal. Over Indiana, numerous areas of thunderstorm activity were observed on the aircraft radar. The crew requested and was cleared to avoid all radar returns. During the last 25NM the thunderstorm activity became more numerous and more intense. Prior to, and along the MCI arrival route, the crew requested and was granted rerouting to avoid the buildups.

Prior to Kansas City Center (MCIARTC) handoff to MCI Approach Control (HCIAPP) the crew received the Automatic Terminal Information Service (ATIS) information Romeo. To the best of my memory, information Romeo was: MCI two thousand five hundred scattered, seven thousand broken, ten miles, wind 180 at eleven altimeter 29.74, landing runway 18 (RW18).

Upon initial contact with HCIAPP, the flight was cleared to descend to seven thousand, expect visual approach to RW19. I believe the aircraft was on a heading of approximately 240 degrees at this time. Shortly thereafter US105 was given instructions to turn right to 260 degrees. The crew accepted the turn to 260 and accomplished the Preliminary Landing checklist and tuned the VHF Navigation radios for the RW18 Instrument Landing System (ILS) approach.

At this time the radar was displaying a very large area of intense thunderstorm activity on the right (North) side of the scope beginning at the 12 o'clock position (50NM range) back toward the aircraft to a point approximately 2NM off the right wing. This radar return had a very sharp gradient, transitioning from no return to solid magenta in less than 1/4" on the scope.

The Captain told the F/O "I need about 5 (degrees) left." The F/O requested 5 left from HCIAPP and HCIAPP granted the request. Almost immediately the Captain told the F/O "I need another 5". The F/O requested and HCIAPP advised "Ok for another 5". I then became aware that aircraft inbound to RW19 were being given ILS approaches. Shortly afterward, HCIAPP broadcast "Aircraft are missing (executing missed approaches) on RW19." US105 F/O then asked HCIAPP "US105 what about us?". HCIAPP then advised "How about RW27?" US105 answered "That's what we had in mind". HCIAPP then issued the following. "US105 turn left 240, descend to 3000, cross Misisu (?) (Intersection) at 3000, cleared for localizer back approach to RW27, contact Tower at Misisu." US105 acknowledged "US105".
During the last 30NM inbound to the airport the aircraft had been in Visual Flight Conditions (VFC) with ground lights continuously visible.

The Captain closed the throttles, disengaged the autopilot, extended the speed brakes and started a descent. At some point just prior to this or just after, MCIAPP advised "US105 slow to 190 (KIAS)". The Captain commanded "Gear" and the F/O extended the landing gear. I am uncertain as to the exact distance we were from the field, but estimate that we were between 12 and 15NM. The Captain commanded "1 (degree) flap" and the F/O complied. At some point the Captain dialed the ILS frequency for RW27 in his VHF Nav receiver and set the final approach course. The Captain appeared to be making a max performance descent.

The Captain commanded "15 flaps" end the F/O complied. The Captain then lowered the speed brakes, commanded "Identify my radio (ILS)". The F/O replied "I got it", and began to read the procedure to the Captain.

As we approached 3000' the localizer was almost pegged to the left of the Captain's HSI. The Captain made a small (10-20 degree) left turn and commanded "Checklist" and the F/O read the before landing checklist stopping at "Flaps". The F/O then called MCI Tower and reported "US105 just inside Missoula". MCI Tower replied "US105 cleared to land RW27, wind 243 at 24 gust to 39 estimated.'

About this time we entered heavy rain that increased in intensity throughout the approach. The Captain commanded "CO Flaps" and the F/O extended the flaps to 40 degrees and challenged "Flaps" and the Captain replied "40 flaps",

At this time I observed the Captains altimeter to be reading 2500' and that he was correcting a slight overshoot of the localizer (of approximately 1/2 dot) and was tracking the localized descending at between 800 and 1500' per minute. We had entered light turbulence with the rain and the turbulence was increasing, approaching a moderate level. The Captain's Minimum Descent Altitude (MDA) salmon bug on his altimeter was set at 400' equating to the approach MDA of 1400'.

The Captain leveled the aircraft at 1400' and approximately 5 seconds later, the F/O responded "Runway in sight". The Captain came off instruments and stated "I've got it" and started a slow (300-400FPM) descent along with a slight right turn. Thru out the entire approach, I was able to see ground lights out both side windows and portions of both windscreens. Due to the position of the jump seat on the B-737 and the heavy rain, and the fact that the windshield wipers do not cover the
APPENDIX G

center portion of the windsceen, I could not see anything directly in front of the aircraft. During this entire flight, I at no time, ever had visual contact with the HCI Airport or the runway environment.

From the time the Captain went "heads up", both pilots were outside the cockpit apparently making a visual descent.

Some 20-30 seconds after the Captain left the MDA altitude, there was a loud bang which I perceived to be on the left side of the aircraft. At exactly the same instant of the impact the F/O commanded loudly "Go around". At a point in time just prior to the impact or coincident with the impact, I observed the Captain's altimeter to read 1200'. From my position, I could only see the right half of the Captain's instruments and the left half of the F/O's instruments. I do not remember looking at any of the F/O's instruments during this approach, rather I was monitoring the Captain's instruments because from my position they gave me more information and it is difficult to transition back and forth between the two instrument panels. The Captain's Distance Measuring Equipment (DME) was not visible from my position, so I was never aware of our exact distance from the runway.

I was aware that the Captain had flown a fairly stable approach as far as airspeed was concerned, holding the indicated airspeed to bug +5 to bug +10. I believe the bug speed was 134K.

Almost immediately after the impact and the F/O's go around command the Captain commanded "Go around", slammed the throttles to the firewall, activated the go around switches and called "Flaps 15". The F/O retracted the flaps and reached over to pull the throttles back to Go Around Power. While he was doing this the Captain commanded "Gear up" and reached over the F/O's hand on the throttles and retracted the gear. The gear warning horn began to sound because the flaps had not had time to retract out of the landing range.

The horn stopped when the flaps reached the 15 degree position. The Captain called "What was that?" and the F/O responded "I didn't see anything".

About this time, HCI Tower transmitted "Kansas City has just lost our lights". The Captain was executing a max performance climb and at this time commanded the F/O, "Get me a vector out of this shit". The F/O then transmitted "Tower this USAir give us a vector out of the weather". The tower responded with "Contact Approach frequency ----". The F/O threw the corn switch over to the previous
frequency and transmitted "Approach US105 give us a vector out of this weather". Approach responded "Turn left 170, climb 10 5000". The F/O responded "170 3000".

Prior to the approach the crew had requested and received an alternate missed approach procedure of "Turn left to 170, climb and maintain 3000, advise Tower." Because of the maximum performance climb, we had reached 3000' by the time the left turn was initiated. As we leveled, the Captain commanded "Flaps up".

Immediately after the impact, I observed the "B" Wyd Sys Qty Low Caution light illuminate on the F/O's forward instrument panel. About 5-10 seconds later, the right "B" Hyd Sys Low Press Caution light on the overhead panel illuminated. Approximately one minute later, the left "B" Hyd Sys Low Press Caution light on the overhead panel began to flash intermittently.

We were in light to moderate turbulence, and the aircraft was wallowing thru the air as the Captain accelerated to about 220KIAS. There was a great deal of noise coming from the nose gear areas and the level and type of noise changed with any airspeed change. Additionally, it felt as if we were dragging something.

The 170 heading had not gotten us out of the weather and at the Captain's command, the F/O requested an Easterly heading which was issued by HClAPP along with a climb to 4000'. The Captain started the turn and told the F/O that he wanted to stay at 3000'. The F/U then advised HClAPP, "US105 we have an emergency here, we've lost our hydraulics and want to stay at 3000'. HClAPP replied "US105 maintain 3000", do you want another approach to MCI? The F/O requested the MCI weather and HClAPP replied that the field was under a severe thunderstorm.

The Captain then commanded the P/O "Get us a vector to Wichita (ICT)" which the F/O did. HClAPP replied "US105, turn right to 210, cleared direct to ICT when able, climb and maintain one five thousand". The Captain told the F/O "I want ten thousand". The F/O requested 10 thousand and HClAPP replied "Maintain ten thousand US105".

The Captain then commanded Hydraulic Failure checklist. The P/O accomplished the "B" System Hydraulic Failure checklist and the crew began to evaluate what they had lost. The major item being the yaw damper.

During the climb, the aircraft was not performing very well and when passing 7000' the Captain told the F/O to request 7000' as a final altitude. The F/O requested 7000' and MCIAPP advised "Maintain 7000". The crew requested and was granted several diversions to avoid
APPENDIX G

weather and was eventually handed off to HCIARTC. Additional vectors were given to ICT and to avoid weather buildups.

The Captain then turned to me and asked if I would go into the cabin and make a wing & engine visual inspection. I folded up the jump seat, put on my coat and proceeded to the rear of the aircraft making a visual inspection of the wings and engines as I walked thru the cabin. I observed several passengers removing empty seat cushions and placing them in front of themselves. There wasn't any obvious damage to the wings and engines visible from the cabin.

I continued on to the rear of the aircraft which was yawning severely, approximately 8 to 10' laterally with very little pitch oscillations. The two Flight Attendants strapped into the aft jump seat were very nervous and I spent about two minutes calming them and advising that we were going to ICT, that we had a minor hydraulic problem and that the weather at KCI was too bad to land. They seemed to calm down a great deal and I started back to the front of the Aircraft.

As I came forward the A Flight Attendant was attempting to encourage the passengers to return the seat cushions to the seats. She followed me back to the forward galley and I briefed her and the other Flight Attendant on the forward jump seat as I had the two in the rear. The A Flight Attendant was nervous, but composed. The Flight Attendant on the jump seat appeared to be frozen with fear. She stared straight ahead and did not move during my briefing.

I returned to the cockpit. Approximately 80NM from ICT the flight was advised that the weather at ICT was now a severe thunderstorm. The Captain had the F/O request the nearest available airport and HCIARTC began giving vectors for Salina, Kansas. The Captain inquired if anyone had any suggestions. I then advised him that he should advise his company of their situation, that he should advise the passengers where they were going and that he should brief his cabin crew.

The F/O then accomplished these three items. While I was in the cabin I had spoken to the two USAir F/O's who were passengers. They reported that at the time of the impact they had observed a very bright blue-green flash around the aircraft. While I do not remember telling the Captain about the flash, I did advise that we had probably struck some power lines and could be dragging wires. The Captain acknowledged my advice and I believe he concurred although he did not say so.
I then advised the Captain that the two F/O's were in the back and suggested that they be used as additional emergency personnel. The Captain agreed, and I advised the Captain that I would brief the Flight Attendants and I returned to the cabin. I motioned the A Flight Attendant into the forward galley. I advised her to prepare the cabin for an emergency landing, to bring the two P/O's up to first class and to use them as assistants. I advised her that she had about 12 minutes to prepare the cabin. She was nervous, but composed and only asked me if we would be all right. I reassured her and she seemed to "hitch herself up". The other Flight Attendant on the forward jump seat still seemed to be frozen by fright.

I again returned to the cockpit and we began the approach into Salina. About 12 miles from the runway the gear was extended. The mains came down normally, but the nose gear showed unsafe (Red warning, no green). I then advised the Captain to advise the Flight Attendants to be prepared for a nose gear up landing and that if an evacuation was needed or required, that they should attempt to evacuate thru the forward doors and not thru the aft doors. The F/O then briefed the Flight Attendants by interphone.

The Captain executed a visual approach to runway 35 at Salina end landed with 40 flaps approximately 2500' down the runway flying about bug +20. Touchdown was normal. The Captain extended the speed brake slowly and held the nose gear off the runway till about 80 KIAS. The nose was lowered and the gear was down so the Captain then actuated reverse thrust and slowly decelerated the aircraft using very minimum brakes. As we approached a full stop, he ordered the F/O to take a PA advising the passengers to remain seated.

As soon as the aircraft stopped, the Captain lowered the speed brakes, set the parking brake, activated the emergency exit lights and shut down both engines. He then started the APU. I had gotten, up, stowed the jump seat and had opened the cockpit door. The Crew followed me into the entranceway and asked the A Flight Attendant if the aircraft had an airstair. She did not know. The Captain told her to disarm the door slide which confused her, I believe because she was prepared to activate the emergency egress system. The Captain then told her again to deactivate the slide. She bent down, still appearing to be confused so I said, we don't want to blow the slide, we want to open the door. She seemed to immediately understand and disarmed the slide.

The Captain opened the door and with the assistance of the F/O extended the airstair. The Captain went down onto the stairs and tried to extend the handrails but could not find the locking releases. I then told him to get the
passengers off, which the Flight Attendants began to accomplish.

The Captain and I went down the stairs and observed fluid coming from the left main gear area. We approached the gear and discovered the left outboard brake line severed and shielded antiskid wires damaged. Incidentally, within seconds of the impact the two antiskid lights also illuminated. We then approached the nose gear and observed the left nose gear door damaged and the right nose gear door missing with the entire nose gear area wet with hydraulic fluid.

We then proceeded to the right main gear area and observed an inspection door missing from the right engine. We got down and inspected the underside of the engine and found that it had been compressed from approximately 1/2" to 2" along about 75% of its length. As we started to return to the left side of the aircraft, we observed a penetration of the right wing to fuselage fairing.

When we got back to the left side of the aircraft, the passengers had deplaned and were about 100' from the aircraft in a group. We returned to the cockpit where I retrieved the gear pins. The gear warning horn was still sounding. It had been on since the extension of the gear. The F/O began looking for the circuit breaker and I advised the Captain to pull the voice recorder circuit breaker, which he did. The F/O found the breaker to silence the gear warning.

I descended the stairs and located the F/O passengers and instructed them to insert the main gear pins. No one wanted to go into the nose gear well to insert the nose gear pin because the nose gear was still showing unsafe. After several minutes, a mechanic from a local fixed base operator arrived and he installed the nose gear pin.

The Captain and I accompanied the airport manager in his vehicle to the terminal and Air Midwest's operations. There were three people in the office when we arrived, the Air Midwest Agent, the USAir agent who was on the aircraft and a young pregnant lady sitting in a chair. For some reason, I assumed that she was the wife of the Air Midwest agent. The Captain called his company, his ALPA representative and when the F/O arrived, he talked to the ALPA representative. When they had finished using the telephone (the only one available except for pay phones in the lobby where the passenger were located), I called my Supervisor in Pittsburgh, Hr. Alvin Zito, Operations Manager, FSDO 19 and briefed him on what had happened.

Hr. Zito advised that he would call me back. I was introduced to the CFR Chief who advised me that the woman
in the operations center was a newspaper reporter. I then had security escort her from the building. Apparently to keep her away from the passengers, the USAir agent had invited her into operations and had failed to inform anyone as to her identity.

Later, on a conference call, I briefed FSDO 19, Eastern Region and Washington Headquarters on the incident.

Still later, I briefed ICT FSDO, MCI ATC, NTSB and Central Region on another conference call. At approximately 0200, I was called by the NTSB to impound the aircraft. Immediately thereafter, I was called by Central Region requesting impoundment of the aircraft. I requested security from the airport manager and he advised that he would secure a private security service to protect the aircraft. A few minutes later, Hr. Zito called to again request impoundment of the aircraft.

The aircraft was placed under guard at approximately 0300. I briefed the guard that no one may approach the aircraft unless that person had NTSB identification or FAA form 110A identification.

At approximately 0400, three USAir mechanics arrived via Learjet. I escorted them to the aircraft and allowed them to make an exterior visual inspection. At approximately 0530, FAA Inspectors from the ICT FSDO arrived and I transferred the aircraft to their custody.

At approximately 0630 at the request of the NTSB, I accompanied the ICT Inspectors and the USAir mechanics to the aircraft where altimeter readings were taken and the flight and voice recorders were removed and placed into the custody of the ICT Inspectors. During this trip to the aircraft, a cut of about 12" deep by about 3/4" wide was found in the vertical stabilizer due to it now being daylight. This cut was about 24" below the top of the fin.

I departed the airport for the hotel at approximately 0800.

Harold F. Simpson
SECTION 1: WPDF DATA

<table>
<thead>
<tr>
<th>Entry</th>
<th>Originator</th>
<th>District Office</th>
<th>Inspector's Signature</th>
<th>Supervisor's Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 2: PERSONNEL DATA

<table>
<thead>
<tr>
<th>PERSON'S NAME</th>
<th>POSITION</th>
<th>CREW</th>
<th>TASK</th>
<th>PERSONNEL REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 3: PRODUCT/COMPONENT/EQUIPMENT DATA

<table>
<thead>
<tr>
<th>EQUIPMENT DATA</th>
<th>PERSON'S NAME</th>
<th>MODEL</th>
<th>SERIAL NUMBER</th>
<th>EQUIPMENT REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECTION 4: CONSENT RECORD

<table>
<thead>
<tr>
<th>CONSENT NO.</th>
<th>CODE</th>
<th>OPINION</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS TO DISTRICT OFFICES:

Enter WPDF data from Section 1 only.

Use current WPDF instructions and use consent WPDF instructions.

INSTRUCTIONS: Enter information in Section 1 per current WPDF guidelines, enter information in Sections 3, 4, 5, and 6 as appropriate. Use the following codes for the opinion column: U = Unacceptable, P = Potential.
EXTERNAL VISION CAPABILITIES FROM BOEING 737 COCKPIT OBSERVER'S SEAT

- CAPTAIN'S ONLY
- FIRST OFFICER'S ONLY
- BOTH CAPTAIN'S AND FIRST OFFICER'S
- 3RD CREWMAN'S

EXTERNAL VISION FROM 737 FLIGHT DECK
CAPTAIN'S ONLY

FIRST OFFICER'S ONLY

BOTH CAPTAIN'S AND FIRST OFFICER'S

3RD CREWMAN'S

EXTERNAL VISION FROM 737 FLIGHT DECK ALERT FLIGHT POSITION
ERRATA

THE FOLLOWING CORRECTIONS SHOULD BE MADE TO THE ATTACHED REPORT AS FOLLOWS

Aircraft Accident Report
USAir, Inc., Flight 5050
Boeing 737-400, N416US
LaGuardia Airport
Flushing, New York
September 20, 1989

Page 5, paragraph 2, line 10
Change
... system
To
... system

Page 6, paragraph 2, line 4
Change
... CFM-56-32B
To
... CFM-56-3B2

Page 16, paragraph 2, line 3
Change
... Pilot's
To
... Pilots

Page 17, paragraph 5, line 5
Change
... then
To
... the

Page 20, paragraph 3, line 1
Change
Page 20, paragraph 4, line 5
Change
... its
To
... the aircraft's

Page 33, paragraph 1, line 3
Change
... airport
To
... Airport

Page 34, paragraph 1, line 4
Change
... action
To
... Action

Page 61, paragraph 2, line 2
Delete
... /General Electric Aircraft Engines

Page 63, paragraph 62, line 4
Change
... CFM-56-32B
To
... CFM-56-3B2