NATIONAL TRANSPORTATION SAFETY BOARD

WASHINGTON, D.C. 20594

AIRCRAFT ACCIDENT REPORT

CONTROLLED COLLISION WITH TERRAIN
GP EXPRESS AIRLINES, INC., FLIGHT 861
A BEECHCRAFT 699, N118GP
ANNISTON, ALABAMA
JUNE 8, 1992
The National Transportation Safety Board is an independent Federal agency dedicated to promoting aviation, railroad, highway, marine, pipeline, and hazardous materials safety. Established in 1967, the agency is mandated by Congress through the Independent Safety Board Act of 1974 to investigate transportation accidents, determine the probable causes of the accidents, issue safety recommendations, study transportation safety issues, and evaluate the safety effectiveness of government agencies involved in transportation. The Safety Board makes public its actions and decisions through accident reports, safety studies, special investigation reports, safety recommendations, and statistical reviews.

Information about available publications may be obtained by contacting:

National Transportation Safety Board
Public Inquiries Section, RE-51
490 L'Enfant Plaza, S.W.
Washington, D.C. 20594
(202)382-6735

Safety Board publications may be purchased, by individual copy or by subscription, from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161
(703)487-4600
Abstract: This report explains the controlled collision into terrain of GP Express flight 861, a Beechcraft C99, N118GP, in Amiston, Alabama, on June 8, 1992. The safety issues discussed in the report are, for aircraft operating under 14 CFR Part 135, the importance of adequate preparation and experience of newly hired captains, available approach charts for each pilot, and adherence to specific stabilized approach criteria. The importance of adequate cockpit resource management is also discussed. Recommendations concerning these issues were made to the Federal Aviation Administration.
CONTENTS

EXECUTIVE SUMMARY

- v

FACTUAL INFORMATION

1. **History of the Flight** ... 1
2. **Injuries to Persons** ... 6
3. **Damage to Aircraft** ... 6
4. **Other Damage** ... 6
5. **Personnel Information** .. 7
6. **Aircraft Information** ... 11
7. **Meteorological Information** ... 12
8. **Aids to Navigation** ... 12
9. **Communications** .. 12
10. **Aerodrome Information** ... 13
11. **Flight Recorders** .. 13
12. **Wreckage and Impact Information** ... 13
13. **Medical and Pathological Information** 14
14. **Fire** ... 14
15. **Survival Aspects** ... 14
16. **Tests and Research** ... 14
16.1 **Radar Study and Airplane Performance** 14
16.2 **Ground Proximity Warning System (GPWS)** 15
17. **Additional Information** .. 18
17.1 **GP Express Instrument Approach Training Procedures** 18
17.2 **72-Hour History of Flightcrew** .. 20
17.3 **Operator Information** ... 21
17.4 **Southern Route Structure** ... 22
17.5 **FAA Surveillance** ... 24

ANALYSIS

2. **General** ... 26
22. **Crew Awareness** ... 26
23. **The Flight and Crew Performance** .. 28
24. **Cockpit Resource Management Training** 38
25. **GP Express Management Culture** .. 40
26. **FAA Surveillance** ... 44
3. **ZONCLUSIONS**
 3.1 Findings .. 46
 3.2 Probable Cause .. 48

4. **RECOMMENDATIONS** .. 49

5. **APPENDIXES**
 Appendix A. Investigation and Hearing ... 51
 Appendix B. Cockpit Voice Recorder Transcript ... 52
EXECUTIVE SUMMARY

On June 8, 1992, GP Express Airlines, Inc., flight 861, a Beechcraft model C99, N118GP, crashed while maneuvering to land at the Anniston Metropolitan Airport, Anniston, Alabama. The flight was a scheduled passenger flight from the William B. Hartsfield Atlanta International Airport in Atlanta, Georgia, on an instrument flight rules flight plan to Anniston, Alabama.

The captain and two passengers received fatal injuries. The first officer and two passengers were seriously injured. The airplane was destroyed by impact and postcrash fire.

The investigation revealed that the flightcrew was properly certificated and qualified in accordance with applicable Federal Aviation Regulations (FARs) and company requirements, and that there was no evidence of adverse medical conditions that affected the flightcrew, nor were they under the influence of, or impaired by, drugs or alcohol. The investigation determined that the airplane had been properly maintained and that there was no evidence of a malfunction or preexisting problem that would have either caused or contributed to the accident. Additionally, it was determined that weather was not a factor in the accident.

The Safety Board determined that the flightcrew experienced a loss of situational awareness that led to a controlled collision with terrain. After being cleared by air traffic control for the instrument landing system (ILS) approach to runway 5 at Anniston, the flightcrew turned the airplane toward the north away from the airport in the erroneous belief that the airplane was south of the airport. The flightcrew did not perform the maneuvers specified on the approach chart, which required flying outbound from the airport, then performing the “procedure turn” back toward the airport. The investigation determined that in actuality, the airplane had intercepted the back course localizer signal for the ILS approach, and the flightcrew had commenced the approach at a high airspeed about 2,000 feet above the specified altitude for crossing the final approach fix. The airplane continued a controlled descent until it impacted terrain.

The National Transportation Safety Board determines that the probable causes of this accident were the failure of senior management of GP Express to provide adequate training and operational support for the startup of the southern operation, which resulted in the assignment of an inadequately prepared captain with a relatively inexperienced first officer in revenue passenger service, and the failure
of the flightcrew to use approved instrument flight procedures, which resulted in a loss of situational awareness and terrain clearance. Contributing to the causes of the accident was GP Express' failure to provide approach charts to each pilot and to establish stabilized approach criteria. Also contributing were the inadequate crew coordination and a role reversal on the part of the captain and first officer.

As a result of its investigation of this accident, the Safety Board made five recommendations to the Federal Aviation Administration (FAA): to require the availability of two sets of approach charts on aircraft requiring two pilots, to require the development and use of stabilized approach criteria, to develop evaluation criteria for cockpit resource management (CRM) training programs, captain flight training, and a minimum experience requirement for commuter air carrier captains. Additionally, the Safety Board reiterated a recommendation to the FAA to require that scheduled 14 CFR Part 135 operators develop and use CRM training programs and a recommendation to establish minimum experience levels for pairing flightcrews.
NATIONAL TRANSPORTATION SAFETY BOARD
WASHINGTON, D.C. 20594

AIRCRAFT ACCIDENT REPORT

CONTROLLED COLLISION WITH TERRAIN
GP EXPRESS AIRLINES, INC., FLIGHT 861
A BEECHCRAFT C99, N118GP
ANNISTON, ALABAMA
JUNE 8, 1992

1. FACTUAL INFORMATION

1.1 History of the Flight

On June 8, 1992, GP Express Airlines, Inc., flight 861, a Beechcraft model C99, N118GP, crashed while maneuvering to land at the Anniston Metropolitan Airport, Anniston, Alabama. The accident occurred about 0852 central daylight time. The flight was a scheduled passenger flight from Atlanta, Georgia, to Anniston, Alabama, operating under the provisions of Title 14 Code of Federal Regulations (CFR) Part 135. The flight was operated in accordance with an instrument flight rules (IFR) flight plan, as required by the airline's procedures. The captain and two passengers received fatal injuries. The first officer and two passengers were seriously injured. The airplane was destroyed by impact and postcrash fire.

The crew of flight 861 reported for duty on June 8, 1992, about 0400 at the GP Express operation facility at the Tuscaloosa Municipal Airport in Tuscaloosa, Alabama. They were scheduled to fly GP Express flights 860 and 861. The flights were to be from Tuscaloosa to Atlanta, Georgia, and return, with intermediate stops in Anniston, Alabama.

Flight 860 departed Tuscaloosa at 0515. The two GP Express station agents at Tuscaloosa reported that the captain and first officer were in good spirits, and that the passenger loading and the departure were routine. The flight crew reported no problems with the airplane prior to departure. The flight crew made a visual approach to Anniston, and flight 860 arrived on schedule at 0555. The GP Express station manager at Anniston reported that the first officer informed him that the return flight from Atlanta to Anniston, flight 861, might be late because of possible problems with the airplane, but the first officer did not elaborate on the
possible aircraft problems. However, during the Safety Board’s public hearing for this accident, the first officer reported that the only problem with the airplane was considerable noise on the intercom system, which made it difficult for the pilots to communicate with each other. Flight 860 departed the passenger gate at Anniston at 0600 and arrived in Atlanta at 0645.

In Atlanta, 469 pounds of fuel were added to the airplane, for a total outbound fuel load of 1,500 pounds, and the flight crew received the weather information for the return flight segment. Four passengers boarded flight 861 and six bags were loaded in the airplane’s baggage pod. Flight 861 departed the passenger gate at Atlanta on schedule, at 0755, and was scheduled to arrive in Anniston at 0845. However, as a result of air traffic control (ATC) ground hold procedures, the takeoff was delayed until about 0822. Ground personnel at Atlanta and the ATC controllers who talked to the flight crew by radio reported that the crew seemed in good spirits and was congenial. The flight crew did not report any difficulties with the airplane to the airline or ATC personnel while on the ground at Atlanta or en route to Anniston.

After takeoff, flight 861 received radar vectors from the controllers toward the Anniston area. However, the vectors did not provide the navigational fix to which the controller was directing the flight. Flight 861 was provided a cruise altitude of 6,000 feet. The cockpit voice recorder (CVR) conversations indicate that during the flight, the crew had difficulty understanding each other’s remarks and instructions because of the noise on the intercom system. Additional conversations indicated that the first officer had noted some undefined problems with the airplane’s autofeather system and the battery, and that he had had difficulty in setting the radio frequencies. (Appendix B contains the transcript of the CVR).

About 0841, the Atlanta Air Route Traffic Control Center (Atlanta Center) controller cleared flight 861 to "descend pilot's discretion, maintain five thousand." The first officer acknowledged the transmission and stated that the flight was descending to 5,000 feet. The captain then remarked, "does he want us to resume own navigation?" The first officer did not reply to the captain's question. The captain then stated, "I heard him say that. As far as I'm concerned I'm still on vectors two eight zero." The first officer replied, "yeah two eight zero's fine. Because we're on course anyway so let's just hold it." The captain responded, "yeah, but we're slowly drifting off." This comment resulted in a short dialogue between the crew as to whether the airplane was on course. This conversation the captain asking, "what's the course?" To which the first officer replied, "zero eight five inbound." The conversation concluded at 0842:39, with the captain's statement
"then we're way off course." In fact, 085° was the outbound course from the Talladega VOR eastward on the Victor airway. The course inbound to Talladega was the reciprocal of 085°, or 265°.

At 084244, the Atlanta Center controller informed flight 861 that radar service was terminated and to contact Birmingham Approach Control. The first officer acknowledged the instructions and contacted the Birmingham Approach Control at 0843:19. During the public hearing, the first officer testified that he believed that flight 861 had been receiving radar vectors from ATC. At 0843:42, the Birmingham approach controller instructed flight 861 to descend and maintain 4,000 feet and continue direct to the Talladega VOR with a possible visual approach to Anniston airport if the flightcrew was able to see the airport. If the flightcrew was unable to see the airport, they should expect the instrument landing system (ILS)² approach to runway 5 from over the approach fix, "BOGGA." (Figure 1 is a copy of the ILS runway 5 approach to Anniston airport.) At 0844:13, the first officer responded, "possible visual and ah if we don't see it we'll let you know for the ILS." At 0847:32, the captain asked the first officer, "...you've got everything set up that you can except the localizer frequency right?"

At 0847:46, the approach controller informed the flightcrew of the latest weather for Anniston: the ceiling at the airport was 1,500 feet, the visibility was 3 miles in fog and haze, and the 700 foot layer of clouds was scattered variable to broken and appeared to be breaking up. The first officer acknowledged the transmission at 0848:05. At 0848:10, the fmt officer asked the captain, "you want to go around for the ILS?" About the same time, the controller notified flight 861 to "proceed direct BOGGA maintain four thousand 'til BOGGA cleared localizer runner ILS runway five approach."

The captain then requested that the first officer contact the controller to inquire about flight 861's distance from BOGGA. Rather than contact the controller, the fmt officer mentally computed the distance as being 5 miles. At 0848:49, the first officer stated, "didn't realize that you're going to get this much on

1 Very high frequency omni-directional range (VOR) electronic navigation aid used as the basis for navigation in the National Airspace System.

² An instrument landing system (ILS) is designed to provide an approach path of exact lateral and vertical alignment of an aircraft with the runway. The system consists of a localizer signal that provides lateral guidance, a glideslope signal that provides vertical guidance, marker beacons that provide range information, and approach lights to the runway threshold.
Figure 1.--ILS Runway 5 Approach, Anniston, Alabama.
(Reproduced with permission of Jeppesen Sanderson, Inc.)
your first day did ya." At 0849:02, the captain asked, "got the localizer in?" To which the fit officer replied, "workin' on it." At 0849:20, the first officer stated, "there you go." The captain replied, "yup went right through it." The first officer then inquired, "can you go around for it?"

At 0849:26, the captain stated, "I thii we're right over the outer-." The first officer interjected, "we're right over BOGGA. He kept us in real tight... we're four and a half out... go ahead and drop your gear, speed checks."

At 0849:43, the captain stated that the "glideslope isn't even alive. What's the minimum altitude I can descend to 'til I'm established?" The first officer responded, "'til established. Twenty two hundred."3

At 0850:06, the approach controller informed the flightcrew that the weather south of BOGGA was moving northbound and that the leading edge of the weather was about 2 miles southwest of BOGGA. At 0850:18, the first officer acknowledged the transmission and reported, "we're out of four thousand for the localizer at this time and we're inside of BOGGA." The controller replied, "yes sir and advise procedure turn inbound." At 0850:28, the first officer stated, "ah procedure turn inbound complete."

At 0850:53, the captain stated, "ah we gotta go missed on this." The first officer replied, "just a minute--there you go--there you gonna' shoot right through it again--there you go see." At 0851:12, the first officer stated, "okay we gettin' in close keep 'er goin'," followed by, "you're okay." The captain responded, "hopin' no one on here's a pilot."

At 0851:30, the first officer stated, "through twenty two..." The captain responded, "okay we're on our way" then, "there's the glideslope." The first officer replied, "we can continue our descent on down. We're way high." The captain then stated, "okay is the glideslope working?" The first officer replied, "nope I'm not getting any... so with no glideslope, we're down to eleven hundred." The captain then asked the first officer to confirm that the proper radio frequency for the ILS had been selected. The first officer confirmed that the proper frequency had been selected.

3During the public hearing, the chief pilot and the director of operations for GP Express stated that only one set of approach charts was kept in each airplane. Normally, the flying pilot would review the approach charts and then give the approach plate back to the nonflying pilot. The nonflying pilot would then read aloud the pertinent elements of the approach and then place the approach charts on the center console. The director of operations stated that several captains had purchased and used their own set of approach charts.
At 0852:13, the captain asked, "what's our missed approach point now?" The first officer responded that missed approach would be at the middle marker at an altitude of 1,200 feet. At 0852:24, the first officer stated, "coming up." The sound of impact was recorded on the CVR at 0852:25. There were no witnesses to the crash.

The accident occurred during the hours of daylight, at 33°40' north latitude and 85°44' west longitude. The accident site was at an elevation of about 1800 feet mean sea level (msl); and it was located about 7.5 miles northeast of the Anniston airport. At the time of the accident, the area near the accident site was enveloped in fog and low-lying clouds. The cloud ceiling at Anniston airport was reported to be 1,500 feet.

1.2 Injuries to Persons

<table>
<thead>
<tr>
<th>Injuries</th>
<th>Crew</th>
<th>Passengers</th>
<th>Others</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatal</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Serious</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Minor</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>None</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

1.3 Damage to Aircraft

The airplane was destroyed by impact and postcrash fire. The value of the airplane was estimated at $1.3 million.

1.4 Other Damage

Only trees and vegetation in the area of the crash were destroyed by the impact and the postcrash fire.

4The decision height for the Anniston runway ILS is 879 feet with the glideslope operational. If the glideslope is not operational, the minimum descent altitude is 1,100 feet. The captain was required by Federal Aviation Administration (FAA) regulations to add 100 feet to these minimums until he acquired 100 hours experience as captain.
1.5 Personnel Information

The captain and first officer were properly certificated in accordance with existing Federal Aviation Regulations (FARs). The investigation revealed that the pilots were in good health.

The captain, age 29, had been hired by GP Express on May 31, 1992, to attend ground and flight training and then to begin flying as a captain on the company's Beech C99 airplanes. He held an airline transport pilot (ATP) certificate with ratings and limitations for airplane multiengine land, commercial pilot privileges for airplane single-engine land, for rotorcraft helicopter, and an instrument rating for helicopters. He also possessed a flight instructor certificate with ratings and limitations for airplane single- and multiengine instrument airplane, and a ground instructor certificate with the ratings of advanced and instrument. A type rating was not required for the Beech C99. His first-class airman medical certificate was issued on May 6, 1992, with no limitations. He indicated on his medical application that his total civilian pilot time was about 850 hours.

The captain received his commercial pilot certificate for airplane single- and multiengine land with an instrument rating and his flight instructor airplane certificate through the University of Dubuque's aviation program. He began his professional aeronautical experience in June 1986 with the U.S. Army, where he received helicopter training and ultimately instructed in the UH-60, a twin-engine turbine-powered helicopter. When he was discharged from the Army in September 1998, he had attained the rank of Captain and had accrued 1,611 flight hours in helicopters, including 23 hours actual instruments and 211 hours in a simulator. Upon being released from active duty, he entered the Army reserve to maintain his rotary wing flying skills.

From September 1991 to May 1992, the captain was self-employed as a general aviation flight instructor near Enterprise, Alabama. During this period, he provided flight instruction in reciprocating-powered airplanes such as the Cessna 172, the Piper PA-23, PA-44, and the Beech 76 airplanes. While employed as a flight instructor, the captain had flown once to the Anniston airport.

In January 1992, the captain completed the evaluation portion of Right Safety International's (FSI) Airline Training Program. The 2-day program, paid for by the captain, included an examination of his instrument and multiengine knowledge; an evaluation of his piloting skills, including IFR procedures using a motion based simulator; and a background check. After successfully completing the
evaluation program, the captain's name was placed on FSI's list of qualified candidates awaiting airline interviews.

On April 20, 1992, the captain was interviewed by the director of operations, the chief pilot of the southern operations, and the chief pilot for GP Express Airlines. GP Express' director of operations stated that normally the airline hired pilots only as first officers with the prospect for upgrading to captain. However, because of his experience, and the immediate needs of the company, the captain of flight 861 was offered the position of captain in a GP Express Beech C99, which he accepted. This offer was subject to the successful completion of training, for which the captain was required to pay.

On May 16, 1992, the captain completed the GP Express employment application. He stated on the form that he had no fixed-wing turboprop or jet experience. He also provided that he had accumulated a total of 701 hours in reciprocating-engine airplanes, of which 370 hours were in multiengine airplanes and 40 hours were logged as instrument time. As an instructor, he had logged a total of 450 hours, of which 370 were in multiengine airplanes. Additionally, he had logged 45 hours instructing on instrument flight.

The captain's personal flight log contained only his civilian flight experience. The last dated entry was May 29, 1992, which was followed by undated entries for his initial operating experience (IOE) with GP Express. The logbook indicated that the captain had accrued a total of 857.2 hours of flight time, of which 701.7 hours were as pilot-in-command and 38.2 hours were actual instrument time. The logbook further indicated that he had 76 hours of instrument time while using a view-restricting device, 391.3 hours in a reciprocating-powered fixed-wing multiengine airplane, and 17.6 hours in a turbine-powered fixed-wing multiengine airplane. From May 22, 1992, through May 27, 1992, the captain's logbook indicated that he received 11.1 hours of flight training in the C99, including 22 instrument approaches.

GP Express records indicate that the captain had completed 48 hours of initial C99 airplane ground training as of May 21, 1992. The records substantiate 11.1 hours of C99 flight training. Ground and flight training were administered by an instructor employed by FSI on contract to GP Express. The record of ground training did not contain a block on the use and operation of airborne radar. However, the chief pilot for the airline stated at the public hearing that handouts and video training material on the use of weather radar systems are available during ground mining. The instructor stated that the mining was in accordance with the
Federal Aviation Administration (FAA) approved GP Express training program. All of the flight training was conducted in the airplane with the instrument portions accomplished using a view-restricting device. All of the flights were confined to the airline's midwest route structure. The chief pilot reported at the public hearing that the instrument training included ILS approaches in nonradar controlled environments.

On May 29, 1992, the captain completed a 14 CFR Part 135 Airman Competency/Proficiency Check in the C99. The check lasted 1.7 hours and was administered by the GP Express chief pilot, who was an FAA-designated check airman. The flight training and flight check records indicated that the maneuvers performed by the captain included VOR nonprecision instrument approaches and ILS approaches.

The captain acquired his IOE in the C99 on June 1 and June 3, 1992, which consisted of 12.8 hours of flight time and 17 landings. These flights were conducted on GP Express' midwest route structure, with portions of flights and several approaches accomplished in actual instrument weather conditions.

The flight schedule called for the captain's initial revenue passenger flight to take place on June 9, 1992, with the regional chief pilot acting as the first officer. However, due to a maintenance problem with one of the company's C99 airplanes that stranded several passengers at Anniston, it was decided that the regional chief pilot would ferry the airplane on June 7, 1992. At the public hearing, the chief pilot stated that there were no other captains available on June 7, 1992, to ferry the airplane other than the regional chief pilot. As a result of this flight, the regional chief pilot had accrued the maximum number of hours allowed for 7 consecutive days, and therefore, he could not fly the next day. The regional chief pilot had been scheduled to fly with the first officer on flights 860 and 861 on June 8, 1992. At the public hearing, the chief pilot testified that since the captain was in place in Tuscaloosa on June 7, the decision was made collectively by the chief pilot, the crew scheduler, and the president of GP Express to have the captain fly the following day with the first officer.

The first officer, age 24, was hired by GP Express Airlines on April 30, 1992, as a first officer on the Beech C99. He possessed a commercial pilot certificate with ratings of airplane single-engine land and multiengine land, and instrument airplane. He also possessed a flight instructor certificate with ratings of airplane single-engine land, instrument airplane. His first-class medical certificate
was issued on December 27, 1991, and contained the restriction that he must wear corrective lenses.

Prior to being hired by GP Express, the first officer's professional flying experience was primarily acquired as a general aviation flight instructor in single-engine fixed-wing airplanes, on both a part-time and full-time basis, from August 1988 to November 1990. The GP Express ground and flight training records for the first officer indicate that as of April 30, 1992, he had accumulated a total of 1,100 flight hours. Of this experience, 115 hours were in multiengine airplanes, 25 hours were in actual instrument conditions, and 55 hours were instrument flight using a view-restricting device.

The first officer's latest personal logbook indicates that he had accumulated a total of 1,234.2 flight hours, of which 37.7 hours were in actual instrument conditions and 62.9 hours were in simulated instrument conditions.

On August 17, 1991, the first officer completed 50 hours of GP Express' initial ground training program for the C99. Shortly thereafter, a reduction in the airline's operations resulted in the first officer being furloughed until April 1992. Upon his return to the airline, he underwent flight training in the C99. Initially, this consisted of three night flights totaling 5.3 hours, which were completed on April 27, 1992.

On April 28, 1992, the first officer failed to satisfactorily complete the first 14 CFR Part 135 airman competency/proficiency check applicable to the second-in-command position. The duration of the check flight was 0.9 hours and was administered by an FAA-authorized check airman employed by the airline. The areas of deficiency were: steep turns, approaches to stalls, rejected landings, landings from circling approaches, emergencies, instrument procedures for circling approaches, judgment, and crew coordination. According to the President of GP Express, it was company practice to automatically give a failing grade on judgment and crew coordination when pilots failed any maneuver. On April 30, 1992, the first officer satisfactorily completed a 1-hour proficiency check administered by the airline's chief pilot. The first officer's flight training record indicates that he also received 1 hour of flight training under nighttime conditions on April 30. The records do not reveal the areas covered during this training flight. The first officer's personal flight log indicates only one entry for April 30, 1992, which was a day flight of 1 hour. All of the first officer's training flights were accomplished within the airline's midwest route structure.
During April and May of 1992, the first officer flew 7.3 hours and 83.2 hours, respectively, within GP Express' midwest route structure. GP Express flights 860 and 861 were the first officer's first trips on the airline's southern route structure. At the Safety Boards public hearing, the first officer testified that the last time he had flown a full procedure ILS approach in a nonradar environment to an uncontrolled airport was during the course of his training at GP Express. He further stated that none of these training flights at GP Express were conducted under any kind of radar control and that his training at GP Express did include full procedure ILS approaches.

There was no record of any incidents, accidents, flight violations, or enforcement investigations in either the captain's or first officer's FAA airman records.

1.6 Aircraft Information

The airplane was a Beech Aircraft Corporation model C99, serial number U-185, registration N118GP. The airplane cabin was configured to accommodate 15 passengers. The airplane was acquired by GP Express on October 25, 1990. At that time, the airplane had accumulated 6487 hours of flight time and 5794 cycles. At the time of the accident, the airplane had accumulated 9725 hours of flight time and 11,109 cycles. The airplane was maintained under an FAA-approved continuous airworthiness maintenance program in which a routine inspection of the airplane was accomplished after every 75 hours of flight time and a detailed inspection of a portion of the airplane after every 150 hours of flight time. The program was created to provide a complete airworthiness inspection of the airplane every 600 hours of flight time. The airplane was last inspected on June 1, 1992, and had accumulated 27.8 hours since that inspection. The airplane was equipped with two Pratt & Whitney PT6A-36 engines, a weather radar unit, and appropriate equipment for IFR operations. The airplane was not equipped with, nor was it required to be equipped with, a ground proximity warning system (GPWS) or a radio altimeter.

Inspection of the maintenance records indicated no deferred maintenance items. The airplane's flight log, which was aboard the airplane, was not recovered. Crews that had previously flown the airplane stated that everything on the airplane had been working properly. The investigation found that the airplane had been within its weight and balance limitations during the accident flight.
Pilots for GP Express reported that the airplane’s intercom system had recently been changed from a push-to-talk system to a voice-activated system. They reported that due to the high noise level in the cockpit of the Beechcraft C99, an intercom system was necessary for the pilots to communicate effectively. Several pilots reported that the voice-activated system allowed too much ambient cockpit noise to come through on their headsets and occasionally made intracockpit communications difficult.

1.7 Meteorological Information

At 0847, the reported special surface weather observation taken by the Anniston Automated Flight Service Station was:

- Clouds--700 feel scattered, estimated 1,500 feet broken, 9,000 feet overcast;
- Wind--090° at 5 knots;
- Visibility-3 miles in fog and haze;
- Temperature--74°F;
- Dew point--71°F;
- Altimeter setting--30.06;
- Remarks--rain ended at 15 minutes after the hour, clouds were scattered variable to broken.

1.8 Aids to Navigation

There were no reported or known difficulties with the navigational aids at the time of the accident. On June 8, 1992, immediately after the accident, technicians from the FAA performed a ground evaluation of the Anniston runway 5 ILS approach system. The evaluation found that the middle marker was not in service. The technician stated that heavy rain in the area on June 8, 1992, prior to the inspection, may have caused the middle marker to shut itself down. The transmitter was reset and operated normally. A flight test conducted on June 9, 1992, found that all parameters were within established standards and tolerances. Other flight crews that had flown the ILS runway 5 approach to Anniston prior to the accident reported that they did not experience any problems with the ILS equipment on the approach.

1.9 Communications

There were no reported or known air-to-ground communications difficulties.
1.10 Aerodrome Information

Anniston Metropolitan Airport is located 5 miles southwest of Amiston, Alabama, at an elevation of 611 feet msl. The airport has one runway, 05-23, which is 7,001 feet long by 150 feet wide. The airport is served by a common traffic advisory frequency (CTAF), operated by an FAA flight service station in the airport. Runway 5 has an ILS and high intensity runway light system. The glideslope intercept altitude for the runway 5 ILS approach at the BOGGA intersection is 2,018 feet, and BOGGA is 4.3 miles from the runway.

1.11 Flight Recorders

N118GP was equipped with a B+D Avionics and Instruments CVR, serial number A01035. The airplane was not equipped, nor was it required to be equipped, with a flight data recorder (FDR).

Although the quality of the CVR recording was generally good, the recovery of critical crew conversations was hampered by the simultaneous recording of the audio signals from the crewmembers' intercom microphones and radio transmissions on the same CVR channel. Thus, the benefits gained from recording intracockpit communications were reduced or eliminated by overlapping and competing radio transmissions that were recorded on the same CVR channel. A similar problem also has been observed in other airplanes when the crewmembers use "hot" boom microphones in flight. As a result of the investigation of the accident involving flight 861, on January 6, 1993, the Safety Board recommended that the FAA:

Require, for aircraft that must be operated by two crewmembers and be equipped with a four-channel cockpit voice recorder (CVR), the exclusive use of the third CVR radio channel to record only audio signals from the cockpit crew intercom system and the two "hot" boom microphones. (A-92-133)

1.12 Wreckage and Impact Information

The impact marks indicate that the airplane was on a heading of about 053° magnetic when it struck the heavily wooded 15° up-sloping terrain. Several trees were struck before the airplane struck the ground. Measurements of the broken trees indicated that the airplane's flightpath through the trees was about 1 to 2° down. The elevation of the accident site was about 1,800 feet msl.
The airplane came to rest upright on a heading of about 0800 magnetic. The wings and the fuselage forward of the aft cargo compartment were destroyed by a postcrash fire. The empennage was mostly intact but twisted around a tree. The actuators for the nose and main landing gear were in the extended position; indicating that the landing gear was down. The right and left flap actuator extensions were extended to a position that would indicate a flap position of 15°. Examination of the control system for the aerodynamic surfaces disclosed no indication of preimpact failure. All of the navigation equipment was destroyed by the postcrash fire. There was no evidence of a preimpact fire.

Both engines had separated from the airplane and were located forward of the airplane along the crash path centerline. Additionally, both propeller systems had separated from their respective engines. Subsequent examination of the engines and propeller systems found no evidence of preimpact failure or malfunction.

1.13 Medical and Pathological Information

The cause of death for the captain was determined to have been asphyxia, secondary to smoke inhalation. The cause of death for the two passengers was determined to have been blunt force impact trauma. The autopsy of the captain did not reveal any preexisting conditions that contributed to the accident. The toxicological specimens obtained, following the accident, from the captain and first officer, were negative for drugs (licit and illicit) and alcohol.

1.14 Fire

There was no evidence of an in-flight fire. The fuselage was largely consumed by the postcrash fire.

1.15 Survival Aspects

The accident was partially survivable depending upon an occupant's position inside the airplane and ability to exit the wreckage after the accident.

1.16 Tests and Research

1.16.1 Radar Study and Airplane Performance

Radar data recorded at the FAA's Atlanta Center and the Birmingham approach control facility were obtained for the accident flight. The Atlanta radar
data provided the latitude, longitude, and altitude of the airplane during the flight to a point about 13 miles east of the Anniston airport. The Birmingham radar provided the position and altitude of the airplane for about 30 seconds in an area about 4 miles north of the Anniston airport.

Calculations based on speed performance limitations of the airplane and the time between the last Atlanta Center radar return and the first Birmingham radar return indicate that flight 861 flew in approximately a straight line between the two points. Additionally, the flightcrew's CVR conversations for this time did not indicate any changes in airspeed or heading. Calculations based upon the data from the Birmingham radar site indicated that at a point about 4 miles north of the airport, flight 861 initiated a right turn of about 180° and then a left turn towards the north and continued turning right until heading southeast. The location of the accident site and a time correlation of the radar data, the ATC conversation, and the flightcrew's CVR conversation indicate that flight 861 completed its right turn north of the airport, intercepted the back course localizer, turned left to the Anniston runway 5 heading, along the back course localizer outbound, and descended into the terrain. Figures 2a and 2b are composite ground tracks of the airplane as provided by the radar data, CVR conversations, and performance calculations for the Beech C99.

1.16.2 Ground Proximity Warning System (GPWS)

Flight 861 was not equipped, nor was it required to be equipped, with a GPWS. However, the Safety Boards investigation considered whether the installation of a GPWS could have prevented the accident.

Examination of the topography data in the area of the accident was used with the radar study-developed route-of-flight to determine the amount of warning time that might have been provided to the flightcrew, if N118GP had been equipped with a GPWS designed for commuter airplanes. The study indicates that the crew would have been given a visual flashing "GPWS" warning and an aural "TERRAIN TERRAIN - PULL UP" warning approximately 15 seconds before impact, as a result of a terrain closure rate in excess of 2,450 feet per minute (fpm) as it passed over a hill. Assuming a 3-second pilot recognition, and the response time to the aural warning, a wings level pull-up with a 1.03 G load factor would

5Localizer signals provide the pilot with course guidance to the runway centerline. The approach course of the localizer is called the front course. The inbound course line along the extended centerline of a runway, in the opposite direction to the front course is called the back course.
Figure 2a.--Composite ground track of flight 861 with CVR information.
Figure 2b.--Composite ground track of flight 861 with CVR information.
(expanded continuation)
have allowed the airplane to clear the terrain at the impact site and the rising terrain beyond the impact site.

As a result of several accidents in which airplanes operating under 14 CFR Part 135 collided with terrain, the Safety Board issued Safety Recommendation A-86-109.6 This recommendation addressed the need for turbine-powered airplanes operating in commuter service to be equipped with a GPWS. In April 1992, the FAA issued a final rule requiring all turbine-powered airplanes with 10 or more seats, operated under 14 CFR Part 135, to be equipped with an operating GPWS within 2 years. As the Beechcraft C99 has more than 10 seats, airlines operating these airplanes will have to install GPWS prior to April 1994.

In the final rule, the FAA stated that in previous instances involving rules requiring equipment installation that not all airplanes meet the compliance dates in an orderly manner. The FAA further stated that in such cases, certificate holders have made an unacceptable number of requests to extend compliance dates. The FAA had considered an installation schedule as part of the rule making. However, it decided that Principal Operation Inspectors (POIs) will monitor Part 135 operators to ensure that an acceptable transition to the GPWS is made. The president of GP Express stated that the company was aware of this pending requirement but had not yet scheduled the installation of the systems.

1.17 Additional Information

1.17.1 GP Express Instrument Approach Training Procedures

The investigation found that the GP Express flight and ground twinning program, as well as the policy and procedures implemented by the airline, were in compliance with the commuter air carrier requirements contained in 14 CFR Part 135. The airline's instructions on the subject of stabilized approaches were contained in the company training manual, and consisted of a one-line statement that if a descent rate was in excess of 1,000 fpm within 1 mile of the end of the runway, the approach should be abandoned. The instructions did not mention a target approach airspeed, heading, or altitude. Additionally, the instructions did not

6Safety Recommendation A-86-109. "By Harbor Airlines flight 1808, Beechcraft 8-99, N30WP, Auburn-Lewiston Airport, Auburn, Maine, August 25, 1985" (NTSB/AAR-86/06); "Henson Airlines flight 1517, Beechcraft B-99, N339HA, Shenandoah Valley Airport, Grottoes, Virginia, September 27, 1985" (NTSB/AAR-86/07); "Simmons Airlines flight 1746, Embraer EMB-110p1, Phelps Collins Airport, Alpena, Michigan, March 13, 1986" (NTSB/AAR-87/02)
specify the maximum permissible ILS glideslope and localizer deviations before the conduct of a missed approach would become mandatory.

The flight officer stated at the public hearing that he did not recall having received training on the stabilized approach concept. The regional chief pilot for GP Express' southern operation testified that he was not aware of any company stabilized approach criteria.

The airline's director of operations testified that GP Express' stabilized approach criteria were not as comprehensive as those established by a major air carrier that he had previously worked for as a line and training pilot. The director of operations and the chief pilot of the airline both testified that a more comprehensive stabilized approach policy, with appropriate training and rigid adherence to the policy by the flightcrews, would enhance the safety of their flight operations.

The GP Express training manual for the C99 airliner provided the following procedures for an ILS approach:

The instructor pilot or ATC shall clear the trainee for a front course ILS approach from any specified position. The localizer frequency should normally be tuned and identified on both navigation receivers and the front course set on the course selectors. To maintain orientation to a selected VOR, the navigation receiver of the pilot not flying may remain set to it and displayed on the associated HSI, the RMI, or both. The ADF will be tuned to the outer marker and identified, and the marker beacon receiver turned on, tested, volume set, and high sense selected. The RMI needle operates from the ADF and selected navigation receiver. After tuning the receivers, check all indicators for warning flags. Once the final turn for localizer interception has been made, the pilot not flying will tune and identify the ILS frequency and reset the course selector (if previously set to the reference VOR) prior to localizer interception. The before-landing checklist will be completed to flaps prior to reaching the outer marker inbound. This will place the flaps at Approach and the airspeed stabilized at 140 knots. As the glideslope is captured, the landing gear will be extended and 130 KIAS will be maintained until approaching the runway threshold or initiation of the missed approach. At the MAP (missed approach point), if the instructor pilot calls. "Minimums, no runway," the student shall execute the missed approach. That
attitude should be smoothly rotated to 10 degrees above the horizon as climb power is applied. With a positive rate of climb established, retract the landing gear, accelerate to 120 KIAS and follow normal flap retraction schedule.

1.17.2 72-Hour History of Flightcrew

The following information on the activities of the flightcrew prior to the accident was provided by persons who were familiar with their activities. The captain and the first officer were roommates, domiciled in an apartment in Tuscaloosa, Alabama.

After completing his training at GP Express' facility in Grand Island, Nebraska, on Friday, June 5, 1992, the captain traveled to Enterprise, Alabama, to visit his family. He was due to report to Tuscaloosa, Alabama, on Monday night, June 8, to be prepared for a flight on June 9. On June 5, 1992, he stopped by the Enterprise Airport. Two pilots who spoke with the captain remarked that he was in good spirits and excited about starting "his career" as an airline pilot. The captain spent the rest of the day, and Saturday, June 6, with his family.

On Sunday, June 7, the captain packed his belongings for the trip to Tuscaloosa, went shopping, and then went to a movie with his oldest son. He returned home about 1700, and shortly thereafter, received a phone call from GP Express, asking him to fly the next day and informing him who would be the first officer. According to the captain's wife, he was concerned that he would not be flying with GP Express' regional chief pilot on his first day of work as was originally planned.

The captain's wife said that he then telephoned the first officer and expressed his concern about not flying with the regional chief pilot, and that both the first officer and he were new to the southern operation. He then left for Tuscaloosa, arriving at the apartment about 2100.

The first officer arrived in Tuscaloosa on June 4, 1992, as part of his transfer from GP Express' midwestern operation to the southern operation. He spent the evenings of June 4 and 5 in a hotel after spending the days looking for an apartment. On June 5, he checked in with the GP Express local office and was asked to drive to Muscle Shoals, Alabama, to pick up a pilot who had ferried an aircraft there. The first officer accepted the task, arriving back in Tuscaloosa about 2200.
On June 6, the first officer moved his belongings into the apartment, and on June 7, he unpacked and ran errands. That evening, he went to the airport and picked up the schedule changes, which assigned him to fly the next day with the captain.

According to the first officer’s testimony, he and the captain both went to sleep about 2200 on the night of June 7 and awoke about 0300 on June 8. They had a light breakfast and arrived at the Tuscaloosa airport at 0400. The first officer preflighted the airplane, filled out the paperwork, and checked the weather. The first officer testified that the flights from Tuscaloosa to Anniston and then on to Atlanta were uneventful, and that they had fueled the airplane and picked up the new weather information before they departed Atlanta. The first officer stated that “since this was the captain’s first day, she captain did all of the flying, and I handled the paperwork and general company administrative procedures.” GP Express’ General Flight Operations Manual standard procedure instructed the first officers to handle paperwork and general administrative details during the flight.

1.17.3 Operator Information

The parent corporation to GP Express, Inc., GP AIR, Inc., was founded in December 1975, as an on-demand air charter service. In September 1985, GP AIR, Inc., received notification from the Department of Transportation (DOT) that Essential Air Service (EAS) bids were being accepted for service along two routes from Nebraska to Denver, Colorado. In December 1985, GP AIR, Inc., was awarded the contract and subsequently created GP Express, Inc., to carry out that scheduled service under 14 CFR Part 135.

Representatives from GP Express stated that in 1986, about 62 percent of the airline’s revenue came from EAS contracts. They said that the airline carried about 12,000 passengers annually. In 1992, the airline had grown considerably with a northern route structure that included the states of Colorado, Nebraska, South Dakota, Minnesota, Iowa, and Missouri. In March 1992, the airline was awarded an EAS contract to provide service in Georgia, Alabama, and Mississippi. The company projected that in 1992, about 12 percent of its revenue would be from EAS contracts and that it would carry about 80,000 passengers. At the time of the accident, GP Express operated 7 Beechcraft C99s and 3 Beechcraft 1900s. The airline employed 26 captains and 26 first officers.

7Essential Air Service is a federal program that subsidizes scheduled air service to certain select cities.
GP Express' senior management structure consists of a chief executive officer (CEO), a president/general manager, a director of Operations, and a chief pilot. The CEO was the founder of the airline, and his aviation experience was in on-demand charters and commuter airline operations both as a pilot and as the owner/operator. The president holds a private pilot's certificate and has previous management experience with air carriers operating under 14 CFR Parts 135 and 121. He had been hired by GP Express about 1 month prior to the accident. Both the director of operations and the chief pilot had previously been employed as pilots and in supervisory positions with air carriers operating under 14 CFR Part 121.

1.17.4 Southern Route Structure

On September 18, 1991, DOT requested proposals from carriers who were interested in providing EAS at Anniston, Gadsden, Muscle Shoals, and Tuscaloosa, Alabama, and Laurel/Hattiesburg, Mississippi. The EAS team conducted an evaluation of GP Express' fitness to provide service to these cities. This evaluation included reviewing the FAA's aviation safety analysis system for enforcements and violations, contacting the FAA's regional counsel's office to discuss three open cases, and requesting comments from community leaders, airport officials, and representatives of connecting airlines about their opinion of GP Express' ability to provide adequate service. The evaluation also included a review of GP Express' management depth and financial ability to assure that the carrier had sufficient management expertise and capitalization to handle the expansion. Prior to awarding the contract, the POI for GP Express was contacted by an official of DOT to determine if GP Express had any operational problems that might make it unsuitable to expand into these new markets. The POI informed the official that there were no problems with GP Express at that time. On March 26, 1992, GP Express was notified that it had been awarded the EAS contract to serve these cities. Additionally, the EAS evaluation team performed an on-site inspection of GP Express' southern operation before the air carrier began service in the region.

In response to the EAS award, GP Express set up a schedule that would allow the airline to commence operations on June 6, 1992. This date was determined by GP Express management. Among the items on the schedule of events was the hiring and training of new pilots. Historically, GP Express had screened, hired, and trained its own pilots. In March 1992, GP Express received a letter from FSI describing its Airline Training Program as a source for qualified pilots. Under the FSI program, the airline would be supplied with the resumes of prescreened applicants that met GP Express' qualifications. Once an applicant was selected by GP Express, FSI would train the prospective employee in the operations
of the airline and give the necessary training in the Beech C99. To provide quality control of FSI's training program and to ensure that each pilot met the airline's standards, GP Express' FAA-designated check airman conducted the final flight check of each applicant. GP Express signed a contract for the FSI program on April 4, 1992. Representatives of GP Express stated at the public hearing that the company would save about \$40,000 by utilizing the FSI program. The president of GP Express stated that the FSI agreement also allowed Operations management to focus on oversight of the new southern operations, and to perform their other responsibilities for managing the airline's flight department, while FSI performed the training.

When the contract was signed, both GP Express and FSI were considering hiring only first officers through the FSI program. However, after GP Express had surveyed the number of captains who were willing to transfer to the new southern operation and the number of first officers who were qualified to be upgraded to captain, GP Express management realized that at least one captain position would need to be filled from the newly hired pilots. After reviewing the applications from FSI and interviewing the selected candidates, the chief pilot and director of operations selected the captain of flight 861 to be hired directly as a captain, rather than as a first officer. Their decision was based upon the captain's flight experience in aircraft that required two pilots, his maturity, and his experience as an instrument flight instructor in the geographic area to be serviced. GP Express' flight operations manual states that the minimum qualifications for being selected as a captain require an ATP certificate, 1,500 hours of flight time, and 750 hours of multiengine flight time. The president of GP Express stated that the final selection is made on the basis of the prospective captain's total experience. The FAA requires, in 14 CFR Section 135.243, that a captain of a multiengine commuter aircraft possess an ATP certificate. The operating experience requirements contained in 14 CFR Section 135.144 state that a pilot must have a minimum of 20 hours of experience in a multiengine turbine engine-powered aircraft in the make and basic model aircraft in order to be designated as a pilot-in-command.

The FSI training instructor, who was responsible for the ground school and flight training, testified that he was initially concerned that GP Express wanted to train a person with relatively few hours in fixed-wing aircraft and no experience in fixed-wing turbine-powered airplane to be a captain. The FSI training instructor voiced these concerns to his supervisor at FSI, GP Express' chief pilot, GP Express' director of operations, and a GP Express FAA check airman. The chief pilot and director of operations explained to the FSI training instructor and supervisor the basis upon which the captain of flight 861 had been selected for immediate training.
as a captain rather than as a first officer. Following this discussion, both the FSI supervisor and training instructor agreed to continue training the captain. He testified that the captain was given instruction beyond the other students in order to prepare him as a captain. The FSI training instructor testified that after the captain completed the training, the instructor believed that the captain was fully qualified to carry out the duties as captain. However, during training, the instructor had found that the captain, on two occasions, did not use the first officer as a cockpit resource. He specifically told the captain that he must use and listen to his first officer.

The director of operations for GP Express had originally proposed 5 days for route qualification experience prior to starting service in the southern region. The director of operations stated at the public hearing that he believed that this experience would have been beneficial in that the flightcrews could gain experience working with each other and flying into new airports with terrain substantially different from that found in the midwest operation. The CEO and then-president of GP Express rejected the planned route qualification flights as being unnecessary. Representatives for the airline stated that the route qualification was not necessary because, "when pilots fly a charter, they do not perform a dry run" and that IOE on existing northern routes provided sufficient line operations experience.

Prior to commencing service in the southern region, GP Express conducted several "good will" flights to each airport that would be served. The purpose of these flights was to familiarize the local community leaders with GP Express. Additionally, these flights allowed GP Express management to better understand the logistics of the new operation and available facilities. The chief pilot for the southern region flew as captain on most of these flights. Afterward, the chief pilot developed a package of information for each airport and routes of flight, which was provided to each pilot. This information contained details on the approaches to the airport, where to get fuel, obstructions, etc. Each of the southern route pilots received this information prior to their assignment to the southern region, and they were briefed on airport operations for each airport. Also, the first officer had received an additional hour briefing from the regional chief pilot for the southern region the night prior to the flight.

1.17.5 FAA Surveillance

The Flight Standards District Office (FSDO) in Lincoln, Nebraska, is responsible for the surveillance of GP Express Airlines, Inc. At the time of the
accident, the **airline** was in compliance with the **FARs**, and the **FAA** had no pending certificate actions against the airline.

When GP Express was notified that it had been awarded the contract for the southern region, the airline's director of operations notified the Lincoln **FSDO**. About 2 weeks prior to GP Express commencing its southern operations, the Lincoln **FSDO** requested geographic surveillance support from the Birmingham, Alabama, **FSDO**. On June 4, 1992, the POI and the Principal Maintenance **Inspector** who were assigned to GP Express went to the Birmingham FSDO to brief the facility personnel on the operation of the airline. Under the flight standards geographic program, the Lincoln **FSDO** was responsible for the overall work program planning to ensure adequate surveillance and airman certification for GP Express. The Birmingham **FSDO** was responsible for providing surveillance of GP Express' southern operation in accordance with the guidance provided by the Lincoln **FSDO**. While in Birmingham, the **POI** flew on several GP Express "good will" flights to observe the new operation.

The chief of the Birmingham **FSDO** agreed to provide geographic surveillance of GP Express' southern operations with two **Part** 135 qualified aviation safety inspectors--one airworthiness inspector and one operations inspector. On the morning of the accident, two inspectors from the Birmingham FSDO were waiting at the Anniston airport to perform a ramp and en route inspection on flight 861. This would have been the first inspection of the airline by the Birmingham FSDO.

At the public hearing, the POI testified that he had been informed by GP Express' director of operations that one of the newly hired pilots was selected to be a captain for the new southern region flights. The **POI** stated that he was not involved in this decision, but was aware that GP Express had upgraded all of the first officers that were eligible for promotion to captain and that it was a necessary choice.
2. ANALYSIS

2.1 General

The investigation found that the flightcrew was properly certificated and qualified in accordance with applicable FARs and company requirements. The pilots were in good general health and had proper FAA medical certificates at the time of the accident. There was no evidence of adverse medical conditions that affected the flightcrew, and they were not under the influence of, or impaired by, drugs or alcohol.

The airplane had been maintained in accordance with applicable FARs and company operations specifications and maintenance procedures. Examination of the airplane's structure, flight control system, propellers, and powerplants disclosed no evidence of a malfunction or preexisting problem that would have either caused or contributed to the accident. The airplane's navigational equipment was severely damaged by fire and could not be tested. The landing gear and flap positions indicated that the airplane had been properly configured for the approach.

Although there were some rain showers near the airport, the ceiling and visibility were above the minimum approach requirements at the time of the accident. Therefore, weather was not a factor in the accident.

The circumstances of this accident indicate that the flightcrew experienced a loss of situational awareness that led to a controlled collision with terrain. The Safety Board's investigation examined the possible events that could have caused the flightcrew to lose awareness of the airplane's location and to ultimately deviate from established instrument flight procedures.

2.2 Crew Awareness

The Safety Board believes that a combination of the flightcrew's activities during the days leading up to the accident, their expressed enthusiasm for starting their new careers, their lack of familiarity with operating an airplane together, and possible fatigue may have degraded their performance. As previously discussed, the captain completed his IOE on June 3, 1992, in Nebraska, and then returned to visit his family and friends in Alabama. While this probably was intended to be a relaxing time for the captain, he expressed some anxiety about his assignment. Additionally, the first officer had just completed his full month
with GP Express, was busy moving to Alabama, and was trying to find an apartment.

The captain arrived in Tuscaloosa at 2100 on June 7. Both pilots went to sleep about 2200 and awakened about 0300 after having slept a maximum of 5 hours. The accident occurred just 5 hours later after two successful flights of less than 2 hours. Therefore, the pilots should not have been fatigued by the flight and duty time. However, the short sleep period and early rising time are factors that could have led to fatigue. Consequently, there were elements present that had the potential for inducing fatigue with associated substandard performance. The accident circumstances certainly illustrated substandard performance on the part of both pilots that is not readily explainable.

The anticipation of moving to a new area and starting their careers could have masked any weariness felt by both crewmembers from their reduced hours of sleep or rest. This emotional stimulation could have been amplified or sustained by the fact that this was not only the captain's first day as an unsupervised captain, but also his first day as an unsupervised airline pilot. Also, this was the first officer's first day in the southern region and the first time he would be flying with this captain.

It is likely that the crew was giving considerable advance thought to their expected activities during the initial flights from Tuscaloosa to Anniston, then to Atlanta. Additionally, the crew may have been concerned with anticipated ATC difficulties in the Atlanta area, including keeping up with ATC instructions and the possibility of long delays. However, these two legs proved to be uneventful, as was the departure from Atlanta. By the time the crew was en route back to Anniston, their earlier apprehension could have begun to subside. Additionally; the pilots may have developed a sense that flying these remaining legs was going to be relatively routine. These factors could have contributed to an unintentional relaxation of their vigilance.

The actions of the first officer, as recorded on the CVR, suggest a relaxed and almost casual approach to the flight environment. Likewise, the actions of the captain, as recorded on the CVR, also indicate a passive acceptance of the first officer's "coaching," and resulted in his improper management of the flight. This was evident on several occasions, in that he did not assert his concerns about the position of the airplane along the route of flight or on the approach. Although behavior of this kind has been observed in persons who clearly were fatigued, the evidence in this case does not warrant a conclusion that fatigue adversely affected
crew performance on this accident flight. Nevertheless, the Safety Board also cannot rule out such a possibility.

2.3 The Flight and Crew Performance

Because the captain had recently joined the airline, and the first officer was relatively new to airline operations, it is likely that both were highly motivated to perform well in their respective assignments. The captain was under additional pressure to perform well as it was his first unsupervised revenue flight. The captain's statements to his wife and the first officer on the evening prior to the accident indicate that he experienced some concern regarding his first day of line operations.

The flight records of both pilots indicate that they had had recent experience in IFR operations and with conducting ILS approaches in nonradar environments. Both pilots had instrument flight instructor certificates and had received recent ground and flight training. Additionally, the majority of the captain's flight experience was in a highly regimented military flight environment in which he had considerable experience as an aircraft commander and instructor in two-person flight deck operations. Therefore, based upon the flightcrew's experience, training, and motivation, it could be anticipated that both pilots would have had no technical difficulties in performing their duties.

The investigation found that the captain and first officer were similar in age and hours of flight experience. Although the captain was slightly older and had more total flight hours, the first officer had about 100 hours more airline flight experience than the captain. Therefore, it would be expected that both would have considered the other equals in their ability to operate the C99 in line operations. Although the captain chose to perform all the flying himself, this was probably because it was his first day as a captain and not because of an unfavorable reflection on the first officer's abilities.

The first officer testified that the flight of the day, from Tuscaloosa to Anniston to Atlanta, was completed without any difficulty. The CVR transcript indicates that the flightcrew experienced no problems; during the taxi, takeoff, and departure from Atlanta to Anniston at 0841, the center controller cleared the flight to "descend pilot's discretion maintain five thousand." The captain then remarked, "does he want us to resume own navigation?" to which he received no reply from the first officer. The captain then stated, "As far as I'm concerned I'm still on vectors two eight zero." The first officer replied, "yeah two eight zero's fire."
Because we're on course anyway so let's just hold it." The captain responded, "yeah, but we're slowly drifting off." This comment resulted in a short dialogue between the crew as to whether or not the airplane was on course. This conversation included the captain asking, "what's the course?" To which the first officer replied, "zero eight five inbound." The conversation concluded at 0842:39 with the captain's statement "then we're way off course." However, there was no further discussion between the pilots about how they were planning to determine their position or otherwise get the airplane back on course. Based upon the first officer's testimony at the public hearing, the Safety Board believes that the flight crew, thinking that the flight was still receiving ATC guidance, intended to rely on ATC to provide the necessary course vectors in order to either visually acquire the Amiston airport or to guide them to the initial approach fix.

The Safety Board believes that at this time in the flight the captain lost situational awareness because of his uncertainty about the ATC instructions, his uncertainty about the airplane's course and its position relative to the airport, and the first officer's statement that the inbound course was 085°. Additionally, this conversation indicates that the first officer was not providing the captain with the requested information or adequately assisting the captain in the management of the flight. The fact that the captain did not insist on clarification about ATC instructions, whether the radar services had been terminated, or about the first officer's Statement concerning the airplane's intended course, further indicates that the captain had lost, or was losing, control of the situation. He had, in effect, turned the management of the fight over to the first officer. It is possible that the first officer meant to say the course was on the 085° radial from the Talladega VOR, rather than a "course" of 085°. The actual heading would have been the reciprocal or 265°. Providing the captain with the radial rather than the actual course only increased the captain's confusion about the proper course and the airplane's position. The direct airway from the Talladega VOR to the Hartsfield Atlanta International Airport is on the 085° radial.

At 0842:44, the controller informed the flight crew that radar services were terminated and to contact Birmingham Approach Control. The captain did not comment on this information, and at the public hearing, the first officer stated that he (the first officer) believed that the flight had been receiving course vectors from ATC. Shortly thereafter, the first officer asked if the captain wanted to conduct the ILS approach, to which the captain replied in the affirmative. The flight crew then
became occupied with accomplishing the in-range checklist and tuning the radios for the ILS approach. There was no indication on the CVR recording that the flightcrew had selected the appropriate radio frequency of the BOGGA nondirectional beacon or that they confirmed that they were receiving the correct signal.

At 0847:46, the approach controller informed the flightcrew of the latest weather for Anniston. The first officer acknowledged the transmission, then at 0848:10, he asked the captain, "you want to go around for the ILS?" About the same time, the controller told flight 861 to "proceed direct BOGGA maintain four thousand 'til BOGGA, cleared localizer run-er ILS runway five approach." The first officer's suggestion that the captain should go around for the ILS prior to crossing BOGGA is an indication that the first officer was also uncertain about the position of the airplane in relation to the navigational facilities or the airport.

The captain then asked the first officer to contact the controller and inquire about flight 861's distance from BOGGA. This statement indicates that the captain was still uncertain about the airplane's position. His statement also indicates that he believed that ATC was still in radar contact with the flight, despite the controller's previous advisory to the flightcrew that radar contact had been terminated. It is possible that the captain mistakenly believed that he could still receive radar assistance from the controller. Rather than contact the controller, the first officer mentally computed the airplane's distance from BOGGA, apparently with respect to the distance measuring equipment's indicated distance from the Talladega VOR. The Safety Board believes that had the first officer contacted the controller, it would have been apparent that radar contact had been lost and that the captain needed to confirm his position with the navigational equipment on board the airplane. The CVR comments also indicate that the ILS approach briefing was not conducted nor had the captain reviewed the ILS approach chart. These events suggest a breakdown in crew coordination, which further set the stage for the accident.

From the CVR transcript, it appears that the first officer recognized that the captain was having difficulty with the workload and started providing instructions to the captain to help him with the approach. Indeed, during the public hearing, the first officer testified that he recognized that the captain needed help with the approach. At 0848:49, the first officer asked the captain, "didn't realize

8The in-range checklist includes the flightcrew reviewing the approach procedures, informing the passengers to prepare for landing, and contacting the GP Express agent at the destination by radio.
that you're going to get this much on your first day bid ya?" The captain acknowledged that "it's all kind of ganged up here on me a little fast." This comment is another indication that the captain was beginning to lose awareness of the situation and was overloaded by the events. Yet, neither pilot requested assistance from ATC in determining the position of the airplane. Compounding the flightcrew's workload was the inability of the first officer to expeditiously tune the navigational radios to the correct frequencies for the approach.

At 0849:02, the captain asked the first officer, "got the localizer in?" To which the first officer replied, "workin' on it." At 0849:20, the first officer stated, "there you go." To which the captain replied, "yup went right through it." The first officer then inquired, "can you go around for it?" The implication from these statements is that the airplane had passed through the localizer course for the runway. However, there was no indication by the flightcrew that the airplane had reached the BOGGA initial approach fix (IAF), to which the flight had been cleared. Additionally, there was no discussion between the flightcrew about flying outbound from the airport and performing the procedure turn back toward the airport, as specified on the approach chart from the BOGGA IAF. The correlation of the CVR transcript with the radar data indicates that during the above times, the airplane was considerably north of BOGGA and in fact, north of the airport. The Safety Boards investigation could not determine why the flightcrew believed that the airplane had crossed over BOGGA. Figure 3 indicates an appropriate ground track of flight 861 after the controller cleared the flight direct to BOGGA and for the ILS approach to runway 5.

The radar data and the performance capabilities of the Beech C95 indicate that the flightcrew's reaction to receiving the localizer signal was to turn right in a mistaken belief that they were south of the airport and were turning towards the localizer course for runway 5. In actuality, the airplane had intercepted the back course localizer signal for the ILS approach. The airplane was north of the airport, flying away from runway 5. Even if the airplane had been south of the airport, the flightcrew began the approach, at cruise airspeed, while about 2,000 feet above the specified altitude for crossing the BOGGA approach fix, and while inbound to the runway. The Safety Board believes that it would have been very difficult to make a successful landing, as the flightcrew would have had very little time and distance in which to reduce the airplane's altitude, even if they had been in the proper location relative to the localizer and the airport. Again, the flightcrew
Figure 3.--Expected ground track of flight 861 for the ILS approach.
failed to acknowledge their situation and request help from ATC. The flightcrew should have abandoned the approach at this time. The failure to do so was causal to the accident.

At 0849:26, the captain stated that, "I think we're right over the outer." The first officer interjected, "we're right over BOGGA. He kept us in real tight...we're four and a half out...go ahead and drop your gear, speed checks." At 0849:43, the captain stated that the "glideslope isn't even alive. What's the minimum altitude I can descend to 'til I'm established?" The first officer responded, "twenty two hundred." Collectively, these statements indicate that, even though neither flight crewmember was certain of the airplane's position, they each tried to reinforce the other's erroneous assumption that they could accomplish a safe approach from their current position. The statements show that the flightcrew was surprised about the airplane's position and was not prepared to commence the approach at that time. Additionally, the latter statements indicate that the captain did not have the approach plate on hand and needed the first officer to guide him through the approach. These events illustrate poor airmanship and judgment on the part of both pilots.

At 0850:18, the first officer reported to the controller that the flight was "out of four thousand for the localizer... inside of BOGGA." The controller replied, "yes sir and advise procedure turn inbound." At 0850:28, the first officer stated, "ah procedure turn inbound complete." As previously stated, the radar study and CVR correlation found that there was insufficient time for the flight to have made the procedure turn. At this time, flight 861 was north of the airport and was completing a right turn. Therefore, the first officer's statements were inaccurate, and in fact, the flight had turned right to intercept the localizer course without accomplishing the procedure turn, which would have required an initial turn to the left for an outbound course from BOGGA. Additionally, the first officer's statement only served to confirm the flightcrew's mistaken belief that the airplane's position was inside of BOGGA and that they were heading for the runway.

At 0850:53, the captain stated, "ah we gotta go missed on this." The first officer replied, "just a minute--there you go--there your gonna' shoot right through it again--there you go see." At 0851:12, the first officer stated, "okay we gettin' in close keep er goin'," followed by, "you're okay." The captain's statement at 0851:17, "hopin' no one on here's a pilot," indicates that the captain was uncomfortable with maneuvers for the approach and realized that another pilot might consider the flightpath to be unusual. The first officer's initial reply was jovial, and then, he probably believed that the airplane was intercepting the approach path.
These statements are additional examples of the captain's overreliance on the first officer's judgment and assumption that the first officer knew the position of the airplane along the approach. This exchange further illustrates a breakdown in crew coordination and poor judgment. The accident could have been prevented if the flightcrew had abandoned the approach.

During the approach, both the captain and the first officer continued to reinforce their mistaken belief that a successful landing could be made. At 0851:30, the first officer stated, "through twenty two..." The captain responded, "okay we're on our way" then, "there's the glideslope." The first officer replied, "we can continue our descent on down. We're way high." The captain then stated, "okay is the glideslope working?" The first officer replied, "nope it's not getting any...so with no glideslope, we're down to eleven hundred." The Safety Board believes that this dialogue is yet another example of the captain's acceptance of the first officer's assumptions.

The Safety Board concludes that a reversal of roles occurred during this flight--the captain, in effect, relinquished command of the airplane to the first officer. Each time that the captain was unsure of the airplane's position, even when he believed a missed approach should be accomplished, he yielded and continued to follow guidance from the first officer. The situation was compounded by the first officer's uncertainty about the position of the airplane and his continued assertion as to the next course of action. The first officer's eagerness to direct the flight and his overconfidence in his abilities was evident several times during the flight. Perhaps the most critical example was when both he and the captain noticed that their respective glideslope indicators were not indicating a glideslope signal. Rather than consider that the airplane was out of position, the first officer erroneously assumed that the ground facility must have been out of order. This error was then compounded by his providing the captain with the minimum descent altitude for the ILS approach with the glideslope out of service.

The Safety Board notes that the ILS approach to the Anniston airport was not complex or unusual, and expects that, independently, either pilot could have satisfactorily performed the approach. The Safety Board finds that the flightcrew's loss of situational awareness during the en route portion of the flight and their failure to positively establish their position prior to beginning the approach set in motion a chain of events, none of which was recognized either singly or collectively as reasons to abandon the approach.
The flightcrew's decision to try to lose excessive altitude in an attempt to make the landing is a further indication of the crew's poor judgment and decision-making process. The Safety Board believes that GP Express' lack of definitive stabilized approach criteria and the airline's practice of having only one set of approach charts on board the airplane contributed to the cause of the accident. Stabilized approach criteria would have provided the flightcrew with guidance on the acceptable airplane performance parameters and navigational limits to be observed during the approach. Once those criteria had been exceeded, a missed approach would have been mandatory. Additionally, the availability of another set of approach charts could have provided the pilots with the possibility of having the chart conveniently mounted on their respective control yokes during the approach for quick reference. The Safety Board believes that if the flightcrew had conducted an approach briefing and if the captain had had his own approach chart, he would not have had to ask the first officer about various aspects of the approach while attempting to fly it. Nevertheless, the pilots' failure to abandon the approach on several occasions when they were unsure of their position was the primary reason for this accident.

The Safety Board has addressed the concept of stabilized approach criteria to present approach and landing accidents on several previous occasions. For example, as a result of its investigation of a fatal general aviation accident the Safety Board issued Safety Recommendation A-90-016, which asked the FAA to:

Emphasize in its recurrent flight instruction refresher courses and any other means available the need to teach adherence to procedures specified in the pilot's operating handbook and the airplane flight manual and the need to teach adherence to the necessity of flying a stabilized final approach for landing. (A-90-016)

In its letter an December 4, 1990, the FAA stated that it agreed with the intent of the recommendation and had sent a letter to flight instructor refresher clinic sponsors regarding stabilized approaches and, additionally, had included in its examination standards programs emphasis on procedures and proper instruction in stabilized approaches. On March 4, 1991, the Safety Board classified Safety Recommendation A-90-016, "Closed--Acceptable Action."

As a result of its investigation of an incident involving USAir flight 105,10 the Safety Board issued Safety Recommendation A-90-131, which asked the FAA to:

Direct principal operations inspectors to verify that the airlines they surveil have clearly established stabilized approach and missed approach procedures for nonprecision approaches, such as full-scale deflection of \textit{localizer} needle when the airplane is inside the \textit{final} approach \textit{fix}. (A-90-131)

In its reply of August 2, 1991, the FAA stated that it had revised air carrier operations bulletin (ACOB) 7-76-31 to direct the POIs to verify that appropriate air carriers have clearly established stabilized approach and missed approach procedures. Based on this response, the Safety Board classified Safety Recommendation A-90-131 "Closed--Acceptable Action" on November 1, 1991.

Because both pilots were certificated as instrument flight instructors, the Safety Board anticipated that they would have received the information on stabilized approaches mentioned in the FAA reply to Safety Recommendation A-90-016. Additionally, the Safety Board expected that the flightcrew would have received additional training on stabilized approaches from GP Express based on ACOB 7-76-31. As previously discussed, GP Express’ operations and mining manuals lacked information on stabilized approach criteria. The nonstabilized approach flown by the flightcrew of flight 861 strongly indicates that this critical safety-of-flight information is not being adequately disseminated or followed. Therefore, the Safety Board believes that the FAA should require scheduled air carriers operating under 14 CFR Part 135 to develop and include in their flight operations manuals definitive criteria for conducting a stabilized approach. The provisions should specify that if the criteria are exceeded, a missed approach would be required.

The Safety Board believes that the practice of having only one set of approach charts available in the airplane is not in the best interests or flight safety. The Safety Board previously addressed this issue in its investigation of the accident involving Bar Harbor Airlines flight 1808.11 As a result of that investigation, on

10Aircraft Incident Report--"USAir. Inc., flight 105, Boeing 727-200, N281AU, Kansas City, Missouri, September 8, 1989" (NTSB/AAR-90/04)
11Op. Cit. 6.
October 9, 1986, the Safety Board issued Safety Recommendation A-86-105, which asked the FAA to:

Amend 14 CFR 135.83 to require that all required crewmembers have access to and use their own set of pertinent instrument approach charts. (A-86-106)

In its reply of September 15, 1987, the FAA stated that it believed that a second set of charts would not serve to improve cockpit efficiency. In response to the recommendation, the FAA issued a bulletin that directed all POIs to ensure that flight crewmembers received initial and recurrent training on the crew concept with respect to the use of pertinent instrument approach charts and crew briefings prior to all approaches. The Safety Board found that there was considerable merit in the FAA's bulletin to improve crew coordination during instrument approaches. However, the Safety Board found that such a bulletin would not provide the same safety benefits as each pilot having access and use of his own set of approach charts. Therefore, on November 27, 1987, the Safety Board classified Safety Recommendation A-86-106 "Closed--Unacceptable Action."

The Safety Board notes that air carriers operating under 14 CFR Part 121 are required to provide a set of approach charts for each cockpit crewmember. Air carriers operating under 14 CFR Part 135 are required to provide one set of approach charts for each airplane. During the public hearing, GP Express' director of operations stated that he, the chief pilot, and several other captains, had purchased their own approach charts in order to have the approach charts immediately available during an approach. The Safety Board believes that the practice of having only one approach plate available in aircraft requiring two pilots increases pilot workload during the approach and increases the potential for the miscommunication of critical information, as in this accident. Therefore, the Safety Board believes that the FAA should require that all aircraft operating under 14 CFR Part 135 that require two pilots should be equipped with two sets of approach charts.

The captain's statements to his wife and the regional chief pilot the night before the accident indicate that he was concerned about being unsupervised on his first flights in the southern region. The Safety Board believes that it would be normal for a person starting a new career to be nervous in such a situation. Additionally, the captain's only airline operations experience was obtained during his IOE training. Compounding this situation, lights 860 and 861 were his initial experience in working with the first officer. In such a situation, even a person with
prior experience as a captain with another airline might be nervous. As all of the captain's flight experience was obtained either in the military or through general aviation, he could have been uncertain about how to conduct the flight. Collectively, these events present a situation that is not in the best interests of flight safety. This situation could have been prevented if the captain had had the opportunity to gain airline flight experience as a first officer or as a captain on revenue flights with another captain acting as first officer. Therefore, the Safety Board believes that 14 CFR Part 135(c)(2) should be amended to require that the pilot-in-command of a commuter air carrier flight that requires two crewmembers have at least 100 hours of flight time or an equivalent level of training in commuter air carrier operations requiring two pilots.

2.4 Cockpit Resource Management Training

The investigation found that the captain and first officer had received information on cockpit resource management (CRM) during the GP Express ground school training. The majority of this information was in the form of handout material intended for students to study independently. However, there were 13 test questions addressing CRM on the final examination. The investigation found that the captain received additional instruction on CRM during the training to better prepare him for duties as a captain; however, this training was not comprehensive.

During his mining, the captain had been admonished twice by his FSI flight instructor for not using his first officer as a resource. The Safety Board believes that while the flight instructor was well intentioned, these admonitions to a new airline pilot with no experience in airline operations may have been counterproductive. The Safety Board believes that these admonitions may have increased the probability that the captain would be overly reliant on the judgment and opinions of the first officer of flight 861. Consequently, the Safety Board believes that a lack of comprehensive CRM training for the pilots of flight 861 left each of them ill-prepared for the proper coordination that was necessary for the flight and the attempted approach to the Anniston airport.

The investigation revealed that the captain was overly reliant on the first officer during the attempted approach. The CVR transcript indicates that at several points during the flight, the captain was unsure of the airplane's location on the flightpath; however, in each instance, he accepted the first officer's reply and did not verify the accuracy of the response. During the attempted approach, at times when the captain mentioned that he should abandon the approach, the first officer was able to convince the captain to continue. These events indicate that the captain
did not use all of the resources available to him, such as his experience, training, navigational instruments, or ATC to determine his best course of action. Based upon these events, it is apparent that GP Express' CRM program was insufficient in providing the guidance that all resources should be utilized to ensure the safety of the flight.

The events that resulted in the accident involving flight 861 indicate that the FAA needs to provide additional oversight of CRM training programs. The Safety Board is aware that the FAA has issued advisory circular (AC) 120-51, which provides guidelines for developing, implementing, and evaluating a CRM training program. This AC was intended to be used by the operators. However, the Safety Board believes that such information should be expanded upon and should be used as guidance to the POIs to evaluate the adequacy of air carrier CRM programs under their surveillance.

The Safety Board is aware that air carriers operating under 14 CFR Part 135 are not required to have CRM programs. This issue was addressed in the Safety Board's investigation of the accident involving Aloha Islandair flight 1712. In its report on the accident, the Safety Board issued Safety Recommendation A-90-135, which asked the FAA to:

Require that scheduled 14 CFR Part 135 operators develop and use Cockpit Resource Management programs in their training methodology by a specified date. (A-90-135)

In its letter of February 8, 1991, the FAA stated that it was considering amending the training requirements of 14 CFR 135 to include a requirement for CRM training. On May 22, 1991, the recommendation was classified "Open--Acceptable Response," pending further information from the FAA. The Safety Board has been informed that a draft of a notice of proposed rule making (NPRM) on this subject is now in the review process within the FAA.

Based upon the events that led to the accident involving flight 861, the Safety Board reiterates Safety Recommendation A-90-135 and further believes that the FAA should develop criteria for ensuring that airline CRM training program adequately address crew interaction, decision-making processes, information gathering, flightcrew communication, and leadership skills. Moreover, the FAA

12 Aircraft Accident Report—"Aloha Islandair, Inc., Flight 1712, de Havilland Twin Otter, DHC-6-300, N707PV, Halawa Point, Molokai, Hawaii, October 28, 1989" (NTSB/AAR-90/95)
should provide definitive guidance to POIs to urge air carriers to develop CRM programs and to enable the POIs to evaluate these programs.

2.5 **GP Express Management Culture**

GP Express evolved from GP Air, Inc., a small on-demand air charter service. Its founder and past president remains Chairman of the Board and CEO of the company. The company's management included a newly-appointed president, a director of operations with extensive experience in major air carrier operations, and a chief pilot well experienced in the company's midwest commuter operations.

This mixture of varied experience and operational orientation appears to have been reflected in different views about proposed operational practices in the company. Moreover, the top management approach developed for a small air charter service does not appear to have been well suited to larger, more widely dispersed, scheduled passenger operations. Specifically, the suggestion to provide each pilot with a set of approach charts and the plan to provide 5 days for pilot route familiarization experience prior to starting service in the southern region were rejected by the CEO as being unnecessary. Additionally, company management did not express reluctance to hire a pilot with no commuter air charter experience for immediate upgrading to captain. Finally, when faced with an operational need to provide a crew for a scheduled flight, management abandoned an earlier plan to have the regional chief pilot fly with a newly hired captain and instead, paired the new captain with a low-time first officer, even though neither pilot had previously flown these routes, and it was the captain's first unsupervised revenue flight.

The Safety Board has addressed the issue of the pairing of inexperienced crewmembers on previous occasions. As a result of its investigation of three commuter air carrier accidents,\(^\text{13}\) on October 9, 1986, the Board recommended that the FAA:

Issue an air carrier operations bulletin-part 135, directing all principal operations inspectors to caution commuter air carrier operators that have instrument flight rules authorization not to schedule on the same flight crewmembers with limited experience in their respective positions. (A-86-107)

The FAA responded by issuing ACOB 87-2, "Commuter Flightcrew Scheduling." This ACOB directed all POIs to caution commuter air carrier operators who have instrument authorization not to schedule flight crewmembers with limited experience in their respective positions on the same flights.

Also as a result of the same investigations, the Board asked the Regional Airline Association (RAA) to:

Encourage its membership to institute a policy of pilot scheduling which would prevent the scheduling on the same flight of cockpit crewmembers with limited experience in their respective positions.

(A-86-122)

The RAA responded by stating that the organization had:

...forwarded ACOB No. 8-88-1 for Part 121 operators and No. 87-2 for Part 135 operators and have recommended to the extent possible that our members develop policies and procedures to implement the scheduling recommendation contained in the ACOBs. In addition, we have recommended each member airline implement a firm company policy that: (1) the PIC make all takeoffs when the weather conditions require the use of lower than standard takeoff minimums; (2) the PIC make all landings when adverse or marginal weather conditions exist.

Further, as a result of its investigation of the November 15, 1987, crash of Continental Airlines flight 1713,14 on November 3, 1988, the Safety Board recommended that the FAA:

Establish **minimum** experience levels for each pilot-in-command and second-in-command pilot, and require the use of such criteria to prohibit the **pairing** on the same flight of pilots who have less than the **minimum** experience in their respective positions.

(A-88-137)

On May 30, 1989, the FAA responded that it had:

...reviewed this safety **recommendation** and determined that in some cases it **may** not be **practical** or possible to schedule an experienced **flight crewmember** with an inexperienced flight crewmember. For example, a **newly certificated** **air** **carrier** **may** consist of flight crewmembers who are all new to both 14 **CFR** Pan 121 operations and to the **type** of **airplane** they **are** operations. **Also**, an **air** **carrier** **may** initiate a new kind of operation (e.g., long range international flights or supplemental operations) in which the flight crewmembers **may be experienced** in the **type** of **airplane**, but have little or no experience in these kinds of operations. On January 21, 1988, the FAA issued **ACOB** 8-88-1, "Flight Crewmember Experience and Scheduling." This **ACOB** requests that Principal Operations Inspectors bring the issue of scheduling inexperienced flight crewmembers with experienced **flight crewmembers** to the attention of their certificate holders, and request that the certificate holders develop policies and procedures for establishing, to the extent possible, **minimum** experience levels when pairing pilots for scheduling purposes. On July 19, 1988, the FAA issued Action **Notice** 8430.22 to request that the Principal Operations Inspectors review their certificate holder's policies and procedures to determine what, if any, actions have been taken by the certificate holder to implement the guidelines specified in the appropriate **ACOB** or to amend any existing policies and procedures. The FAA conducted a survey of all U.S. air carriers following this review which showed that 41 percent of the 14 **CFR** Part 121 carriers **and** 26 percent of the 14 **CFR** Part 135 carriers had policies regarding minimum experience levels when pairing **pilots** for scheduling purposes. The survey also showed that 52 percent of the 14 **CFR** Part 121 carriers and 12 percent of the 14 **CFR** Part 135 carriers had **procedures** requiring the **pilot in command** to make **all** **takeoffs** and **landings** when either the **pilot in command** or second in command is inexperienced. The FAA believes that **most** U.S. **air carriers** will develop policies and procedures based upon the recommended
practices and guidelines contained in the ACOB, therefore, in light of the expected degree of voluntary compliance with these scheduling practices, combined with the many air carrier training rule making initiatives underway to improve aircrew performance, the FAA believes that rule making is unnecessary at this time.

Based on this response, the Safety Board classified Safety Recommendation A-68-137 "Open—Unacceptable Response." The FAA responded again on December 8, 1989, stating that it had "asked the joint government/industry task force to establish a committee to provide recommendations to the FAA regarding pilot experience, crew pairing, and associated training requirements."

The Safety Board replied on January 31, 1990, changing the status or the recommendation to "Open--Acceptable Response," pending the outcome of the committee's review of the issues of pilot experience, training, and crew pairing. The Safety Board has received no further information regarding the committee's review. However, the Safety Board has learned informally that the FAA has an NPRM in process that will address this issue.

The Safety Board is concerned that even after the Board's prompting of the FAA and industry representatives regarding the need for vigilance in assigning crews, the crew assignments in the historic Alabama accident could still occur. The Board believes that the FAA should take prompt action to require minimum experience levels for each pilot-in-command and second-in-command pilot, and to prohibit the pairing of pilots who have less than the minimum experience in respective positions on the same flight. The Board, based on the FAA's lack of action on Safety Recommendation A-88-137, has classified it "Open--Unacceptable Response" and reiterates it with this report.

During preparations for starting its new southern operation, the GP Express CEO and newly-appointed president made several decisions that, taken individually, were less than prudent from a safety standpoint, but taken collectively, they subsequently created an operational situation that seriously jeopardized flight safety.

The Safety Board believes that the newly-hired prospective captain's prior aviation background and recent FSI training inordinately influenced senior management's assessment of his readiness for immediate upgrading, and for commencing line operations as an unsupervised captain. The Safety Board acknowledges that the captain's training and experience as a military pilot in twin
turbine-powered helicopters, as an instrument flight instructor and as a general aviation flight instructor, provided a valuable foundation for entry into commercial aviation service. However, this background clearly did not provide him with the consolidation of learning and the familiarity with company aircraft in its commuter operations that are essential to safely conduct a flight as an unsupervised captain in revenue passenger operations.

Had senior GP Express management followed the recommendations of its subordinate managers regarding southern region familiarization fights, and had it not abandoned its earlier plan to have the regional chief pilot accompany the new captain on his initial revenue passenger flight, the accident would have been averted.

Accordingly, the Safety Board believes that notwithstanding the fact that GP Express was found to be operating in compliance with the applicable FARs and that FAA surveillance of its new southern operation was adequate, the decisions made by the company management set the stage for conditions that led to this accident.

26 FAA Surveillance

The Safety Boards investigation and associated public hearing indicated that the FAA surveillance of GP Express and the airline's preparations for starting service in its new southern region was conducted in accordance with all applicable flight standards directives. The investigation found that the POI and the geographic surveillance staff from the Birmingham FSDO were timely in their surveillance of the "good will" flights and the first day of scheduled operation, respectively.

Additionally, the experience and training of the captain and first officer of flight 861 exceeded the minimum FAA and GP Express requirements. The POI was informed of the airline's need to hire a pilot directly into a position as captain without any prior experience with GP Express or any other airline. As the new hire met all applicable requirements, the POI did not participate in this selection. The Safety Board believes that the FAA's role in approving the operation to GP Express was not causal or contributing to the accident, although there are measures that probably could have been taken to had prevented the accident. The Safety Board notes that such preventive measures could not have been achieved by force of the regulations but, instead, would have required the POI to persuade the airline to change its operation in the interest of improving safety. Specifically, the POI had no authority to require that the captain of flight 861 receive additional IOE.
regional familiarization flights for the new southern region, or to prohibit the pairing of two pilots with relatively little experience on the same flight. At the public hearing, the POI stated that he had tried to convince the airline to change its practices in areas such as these; however, without the authority of regulations or other directives, he could only rely on his power of persuasion. The Safety Board believes that the company's role in the cause of the accident is more pervasive than that of the FAA.

Although related to the accident, the Safety Board considered the effects of the FAA's approval of GP Express' contract training program with FSI. The Safety Board believes that such contracted training can provide many benefits, such as uniformity of instruction, access to more experienced instructors, and greater resources to collect timely aviation information and training aids. Additionally, contract training can be very beneficial to smaller air carriers as it allows the airline's senior managers and pilots to spend more time supervising the airline.

The Safety Board recognizes that the contract instructors are mined by the airline on its specific operations and procedures. Additionally, the Safety Board recognizes that the contract instructor can have considerable airline flight experience, as was the case for the FSI instructor assigned to GP Express. However, the Safety Board is concerned that the contract pilots that do not have line experience with the particular airline may not be able to provide the students with the "insights" on the day-to-day operation of the airline and other factors associated with line operations.

The Safety Board believes that the experience that a pilot obtains as a first officer in a particular airline is important before upgrading to captain. The Safety Board does not believe that a contract instructor, unless he has worked with the airline for quite some time, can adequately provide this information to a pilot hired directly into a captain's position. Therefore, the Safety Board believes that contract training programs should be augmented so that pilots hired to be captains receive additional flight instruction pertaining to the operating environment and procedures unique to the airline from an FAA-approved company check airman or instructor.
3. CONCLUSIONS

Findings

1. The airplane was certificated, equipped, and maintained in accordance with Federal regulations and approved procedures.

2. There was no preexisting damage to the airplane, its systems, or powerplants that contributed to the accident.

3. The flightcrew was properly certificated and qualified for their duties according to company procedures and Federal Aviation Regulations.

4. Weather was not a factor in the accident.

5. It was the captain's and first officer's first day on duty in GP Express' southern region operation.

6. The captain and first officer had not flown together prior to the day of the accident.

7. The accident occurred on the second trip of the captain's first day of unsupervised revenue operation.

8. During the flight, the flightcrew lost awareness of their airplane's position, erroneously believed that the flight was receiving radar services from ATC, and commenced the approach from an excessive altitude and at a cruise airspeed without accomplishing the published procedure specified on the approach chart.

9. Per company practice, the flightcrew was provided with only one set of approach charts, a situation that contributed to their lack of situational awareness.

10. GP Express' operations and training manuals did not provide detailed information on stabilized approach criteria, which, if exceeded, would have required a missed approach.
11. The captain assumed, without comment, that the first officer knew the position of the airplane and did not corroborate the position by his flight and navigational instruments.

12. A reversal of roles occurred during this flight in which the first officer failed to take directions from the captain and the captain was not assertive with the first officer.

13. During his FSI training, the captain had been admonished twice by his flight instructor for not using his first officer as a resource.

14. GP Express' CRM training, as provided by FSI, was inadequate because the captain did not use all of the resources available to him, such as his experience, training, navigational instrumentation, or ATC, and he did not appropriately use the first officer to determine his best course of action.

15. A GPWS would have provided sufficient warning for the flightcrew to have pulled up and overflown the terrain into which the airplane crashed.

16. The decisions made by GP Express management, specifically, the failure to provide each pilot with a set of approach charts, canceling the pilot route qualification experience prior to starting service in the southern region, and hiring a pilot with no commuter air carrier experience for immediate upgrading to captain, created conditions that led to this accident.

17. The president and chief pilot of GP Express did not consider the possible consequences of pairing a captain and a first officer, with no experience and minimum experience in air carrier operations, respectively, on their first day of duty in the airline's new southern route structure.
Probable Cause

The National Transportation Safety Board determines that the probable causes of this accident were the failure of senior management of GP Express to provide adequate training and operational support for the startup of the southern operation, which resulted in the assignment of an inadequately prepared captain with a relatively inexperienced first officer in revenue passenger service and the failure of the flight crew to use approved instrument flight procedures, which resulted in a loss of situational awareness and terrain clearance. Contributing to the causes of the accident was GP Express' failure to provide approach charts to each pilot and to establish stabilized approach criteria. Also contributing were the inadequate crew coordination and a role reversal on the part of the captain and first officer.
4. RECOMMENDATIONS

As a result of its investigation of this accident, the National Transportation Safety Board makes the following recommendations to the Federal Aviation Administration:

Require that all pilots operating aircraft under 14 CFR Part 135 have access to their own set of instrument approach charts. (Class II, Priority Action) (A-93-35)

Require that scheduled air carriers operating under 14 CFR Part 135 develop and include in their flight operation manuals and training programs stabilized approach criteria. The criteria should include specific limits of localizer, glideslope, and VOR needle deflections and rates of descent, etc., near the airport, beyond which initiation of an immediate missed approach would be required. (Class II, Priority Action) (A-93-36)

Develop guidance and evaluation criteria for Principal Operations Inspectors to use to ensure that airline cockpit resource management training programs adequately address crew interaction, decision-making processes, information gathering, flightcrew communication, and leadership skills. (Class II, Priority Action) (A-93-37)

For airlines that utilize contracted flight and ground training programs, require that pilots hired directly to be captains receive additional flight instruction pertaining to the operating environment and procedures unique to the airline from an FAA-approved company check airman or instructor, rather than only from the contractor instructor. (Class II, Priority Action) (A-93-38)

Amend 14 CFR 135.243(c)(2) to require that the pilot-in-command of a commuter air carrier flight that requires two crewmembers have at least 100 hours of flight time or an equivalent level of training in commuter air carrier operations requiring two pilots. (Class II, Priority Action) (A-93-39)
Additionally, the Safety Board reiterates Safety Recommendations A-88-137 and A-90-135:

Establish minimum experience levels for each pilot-in-command and second-in-command pilot, and require the use of such criteria to prohibit the pairing on the same flight of pilots who have less than the minimum experience in their respective positions. (A-88-137)

Require that scheduled 14 CFR Part 135 operators develop and use Cockpit Resource Management programs in their training methodology by a specified date. (A-90-135)

BY THE NATIONAL TRANSPORTATION SAFETY BOARD

Carl W. Voet
Chairman

Susan Coughlin
Vice Chairman

John K. Lauber
Member

Member

John Hammerschmidt
Member

March 2, 1993
APPENDIX A

INVESTIGATION AND HEARING

1. Investigation

The Safety Board's Southeast Field Office in Atlanta, Georgia, was notified of an aircraft accident involving GP Express flight 861 on the afternoon of June 8, 1992. The investigator-in-charge of the accident was dispatched from the Southeast Field Office and a partial investigative team was dispatched from the Washington, D.C., Headquarters. The investigative team was composed of the following groups: Operations, Human Performance, Structures, System, and Powerplants. In addition, specialist reports were prepared to summarize findings relevant to the CVR and recovered FAA radar data.

Parties to the field investigation were the FAA, GP Express Airlines, Inc., Beech Aircraft Company, and Pratt & Whitney Canada.

2. Public Hearing

A 2-day public hearing was held in Atlanta, Georgia, beginning on September 30, 1992. Parties represented at the hearing were the FAA, GP Express Airlines, Inc., Beech Aircraft Company, and Pratt & Whitney Canada.
APPENDIX B

COCKPIT VOICE RECORDER TRANSCRIPT

TRANSCRIPT OF A B-D AVIONICS AND INSTRUMENTS COCKPIT VOICE RECORDER S/N A01035 WHICH WAS REMOVED FROM A G. P. EXPRESS AIRLINES, INC., BEECH AIRCRAFT CO. C-99, N118GP, WHICH WAS INVOLVED IN A LANDING ACCIDENT ON JUNE 8, 1992 AT THE ANNISTON AIRPORT, ANNISTON ALABAMA.

RDO Radio transmission from accident aircraft
CAM Cockpit Area Microphone sound or source
PA Aircraft Public Address sound or source
INT Flight Crew Intercom sound or source
HOT Flight Crew Hot Microphone sound or source
-1 Voice identified as Captain
-2 Voice identified as First Officer
-? Voice unidentified

THR Atlanta Hartsfield Local Controller (tower)
DEP Atlanta Xartsfield Departure Controller
CTR Atlanta Center Controller
APP Birmingham Approach Controller
CXP GP Express Company operations (Atlanta)
UNK Unknown source
* Unintelligible word
$ Nonpertinent word
Expletive deleted
% Break in continuity
() Questionable text
{} Editorial insertion
-

Notes: All times are expressed in central daylight swings time. All times were derived from the Birmingham Approach ATC recording. Only radio transmissions involving the accident aircraft were transcribed.
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0819:15</td>
<td>((start of recording))</td>
</tr>
<tr>
<td>0819:31 CUI-2</td>
<td>okay, exterior?</td>
</tr>
<tr>
<td>0819:34 CM-I</td>
<td>okay, landing light's comin' on.</td>
</tr>
<tr>
<td>0819:39 CAM-2</td>
<td>battery * cabin temp * auto-ignition?</td>
</tr>
<tr>
<td>0819:43 CAM-1</td>
<td>**.</td>
</tr>
<tr>
<td>0819:45 CUI-1</td>
<td>should be all complete except the *.</td>
</tr>
<tr>
<td>0819:46 CAW-2</td>
<td>auto-ignition.</td>
</tr>
<tr>
<td>0819:48 CUI-1</td>
<td>auto ignition.</td>
</tr>
<tr>
<td>0819:51 CAM-2</td>
<td>and the time we'll be out of here twenty three. guess Louise.</td>
</tr>
<tr>
<td>0820:03 CAM-1</td>
<td>a little late on that, huh.</td>
</tr>
<tr>
<td>0820:11 CAM-1</td>
<td>a</td>
</tr>
<tr>
<td>0820:12 CW-2</td>
<td>* behind us.</td>
</tr>
<tr>
<td>0820:14 CAW-1</td>
<td>wonder if there's any other way you could of gotten out of here. do we have any options on our?</td>
</tr>
<tr>
<td>0820:16 CAM-2</td>
<td>negative, no other way.</td>
</tr>
<tr>
<td>0820:19 CAM-2</td>
<td>this, get use to this I mean this I I this doesn't bug me.</td>
</tr>
</tbody>
</table>

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0819:15</td>
<td>((start of recording))</td>
</tr>
<tr>
<td>0819:31 CUI-2</td>
<td>okay, exterior?</td>
</tr>
<tr>
<td>0819:34 CM-I</td>
<td>okay, landing light's comin' on.</td>
</tr>
<tr>
<td>0819:39 CAM-2</td>
<td>battery * cabin temp * auto-ignition?</td>
</tr>
<tr>
<td>0819:43 CAM-1</td>
<td>**.</td>
</tr>
<tr>
<td>0819:45 CUI-1</td>
<td>should be all complete except the *.</td>
</tr>
<tr>
<td>0819:46 CAW-2</td>
<td>auto-ignition.</td>
</tr>
<tr>
<td>0819:48 CUI-1</td>
<td>auto ignition.</td>
</tr>
<tr>
<td>0819:51 CAM-2</td>
<td>and the time we'll be out of here twenty three. guess Louise.</td>
</tr>
<tr>
<td>0820:03 CAM-1</td>
<td>a little late on that, huh.</td>
</tr>
<tr>
<td>0820:11 CAM-1</td>
<td>a</td>
</tr>
<tr>
<td>0820:12 CW-2</td>
<td>* behind us.</td>
</tr>
<tr>
<td>0820:14 CAW-1</td>
<td>wonder if there's any other way you could of gotten out of here. do we have any options on our?</td>
</tr>
<tr>
<td>0820:16 CAM-2</td>
<td>negative, no other way.</td>
</tr>
<tr>
<td>0820:19 CAM-2</td>
<td>this, get use to this I mean this I I this doesn't bug me.</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
</table>
| 0820:22 CAM-2 | look at the bright side, with the hourly pay scale your *.
| 0820:25 CAM-1 | jingle jingle jingle.
| 0820:27 CAM-2 | learn to play the game dude. I mean it's customer service, there's nothing we can do about this. |
| 0820:38 CAM-2 | 90 ahead end get the auto-ignition on that'll be good. |
| 0820:51 CAM-1 | look at that stuff come out of there. |
| 0820:53 CAU-2 | yup. |
| 0820:54 CAU-2 | okay. |
| 0820:56 CAM-1 | so bring the power in, go to idle on the ah number two cut-off. |
| 0820:59 CAM-2 | here It's gonna, not cut-off. |
| 0821:03 CAM-1 | or ah idle. |
| 0821:04 CAM-2 | I know what you mean. |
| 0821:05 CAM-1 | you knew what I meant. |
| 0821:11 CAM-1 | May feel that? |

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0820:44 TWR</td>
<td>Regional Express eight sixty one runway two seven right taxi into position and hold.</td>
</tr>
<tr>
<td>0820:47 RDO-2</td>
<td>Assume the position eight sixty one.</td>
</tr>
</tbody>
</table>
INTRA—COCKPXT COMMUNICATION

<table>
<thead>
<tr>
<th>Time</th>
<th>Source</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0821:12</td>
<td>CAM-2</td>
<td>yup, that's why I give 'em plenty of time.</td>
</tr>
<tr>
<td>0821:22</td>
<td>CAM-1</td>
<td>okay landing lights, everything is good. We'll be going for nav lights also and strobes once we're In-flight.</td>
</tr>
<tr>
<td>0821:28</td>
<td>CAH-2</td>
<td>that's right.</td>
</tr>
<tr>
<td>0821:31</td>
<td>CAM-2</td>
<td>everything pretty Wall matched up. Everything's kosher here we go.</td>
</tr>
<tr>
<td>0821:34</td>
<td>CAM-1</td>
<td>and we'll climb wall above his climb path.</td>
</tr>
<tr>
<td>0821:43</td>
<td>CM-1</td>
<td>probably one nine-.</td>
</tr>
<tr>
<td>0821:52</td>
<td>CAM-2</td>
<td>okay away 44 go.</td>
</tr>
<tr>
<td>0821:56</td>
<td>CAM-2</td>
<td>lights are out. they're on.</td>
</tr>
<tr>
<td>0821:58</td>
<td>CAH-2</td>
<td>both of them are on. cool.</td>
</tr>
<tr>
<td>0822:01</td>
<td>CM-2</td>
<td>through fourteen. I'll trim out.</td>
</tr>
<tr>
<td>0822:03</td>
<td>CAM-1</td>
<td>thank ya.</td>
</tr>
<tr>
<td>0822:10</td>
<td>CAM-1</td>
<td>airspeed's alive through eighty.</td>
</tr>
</tbody>
</table>

AIR—GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>Time</th>
<th>Source</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0821:44</td>
<td>RDO-2</td>
<td>Regional Express eight sixty one on departure fly heading one nine zero runoff two seven right cleared for takeoff.</td>
</tr>
<tr>
<td>0821:49</td>
<td>RDO-2</td>
<td>Left to one nine zero cleared for takeoff regional eight sixty one thank you.</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

TIME & SOURCE

0822:16
CAM-2
there's vee one.

0822:19
CW-2
and t.so.

0822:21
CAM-2
atand-by there's blue.

0822:24
CAM-2
positive rate.

0822:28
CAM
((sound of trim-in-motion beeps))

0822:51
CAM-2
bring it back a little bit more--.

0823:22
CAM-1
altitude?

0823:23
CAM-2
four thousand.

AIR-GROUND COMMUNICATION

TIME & SOURCE

0822:36
TWR
Pee correction Regional Express eight sixty on turn left heading one niner zero contact departure.

0822:40
RDO-2
left to one ninety going to departure eight sixty one good day.

0823:55
RDO-2
Atlanta departure good morning Regional Express eight sixty one's with ya one nine zero on the heading out of two point four for four thousand.

0824:01
DEP
Regional Express eight sixty one Atlanta departure good morning radar contact maintain four thousand.

0824:06
RDO-2
four thousand eight aixty one.

0824:11
CAM-1
climb check please.
<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0824:13 CNI-2</td>
<td>gear and flaps?</td>
</tr>
<tr>
<td>0824:14 CAN-1</td>
<td>and ah they're up.</td>
</tr>
<tr>
<td>0824:16 CAM-2</td>
<td>power props?</td>
</tr>
<tr>
<td>0824:19 CAN-1</td>
<td>they're set.</td>
</tr>
<tr>
<td>0824:20 CW-2</td>
<td>prop sync?</td>
</tr>
<tr>
<td>0824:21 CAM-1</td>
<td>comin' on.</td>
</tr>
<tr>
<td>0824:22 CAM-2</td>
<td>engine gauges?</td>
</tr>
<tr>
<td>0824:27 CAM-1</td>
<td>checked.</td>
</tr>
<tr>
<td>0824:29 CAH-2</td>
<td>water-meth didn't use. auto-feather?</td>
</tr>
<tr>
<td>0824:30 CAM-1</td>
<td>auto-feather's off. they're both workin' again.</td>
</tr>
<tr>
<td>0824:35 CAM-2</td>
<td>yup.</td>
</tr>
<tr>
<td>0824:37 CAM-2</td>
<td>somethin' must just been doin' drugs on us this morning. okay, lights?</td>
</tr>
<tr>
<td>0824:42 CAM-1</td>
<td>taxi off. strobe's on.</td>
</tr>
<tr>
<td>0824:46 CAM-2</td>
<td>battery' still given us fits, and we're climbin'.</td>
</tr>
<tr>
<td>0824:51 CAM-2</td>
<td>comin' up on a thousand to go your side.</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

TIME & SOURCE

<table>
<thead>
<tr>
<th>TIME</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0826:05</td>
<td>DCP</td>
</tr>
<tr>
<td>0826:08</td>
<td>RDO-2</td>
</tr>
<tr>
<td>0826:16</td>
<td>RDO-2</td>
</tr>
<tr>
<td>0826:24</td>
<td>COMP</td>
</tr>
<tr>
<td>0826:27</td>
<td>RDO-2</td>
</tr>
<tr>
<td>0826:30</td>
<td>COMP</td>
</tr>
<tr>
<td>0826:32</td>
<td>RDO-2</td>
</tr>
<tr>
<td>0826:40</td>
<td>COMP</td>
</tr>
<tr>
<td>0826:45</td>
<td>RDO-2</td>
</tr>
<tr>
<td>0826:48</td>
<td>COMP</td>
</tr>
</tbody>
</table>

AIR-GROUND COMMUNICATION

TIME & SOURCE

<table>
<thead>
<tr>
<th>TIME</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0826:05</td>
<td>Regional Express eight sixty one turn right heading two six zero.</td>
</tr>
<tr>
<td>0826:08</td>
<td>right to two six zero eight sixty one.</td>
</tr>
<tr>
<td>0826:16</td>
<td>hello Atlanta GF Express eight sixty one.</td>
</tr>
<tr>
<td>0826:24</td>
<td>GPA eight sixty one go ahead.</td>
</tr>
<tr>
<td>0826:27</td>
<td>yeah ah are we suppose to give you our out times?</td>
</tr>
<tr>
<td>0826:30</td>
<td>please pretty please.</td>
</tr>
<tr>
<td>0826:32</td>
<td>okay ah since you talked me into it how's one two five five and one three two three sound to ye.</td>
</tr>
<tr>
<td>0826:40</td>
<td>okay one two five five and one three two three.</td>
</tr>
<tr>
<td>0826:45</td>
<td>that's right, they're stacked up out here. talk to you later.</td>
</tr>
<tr>
<td>0826:48</td>
<td>have a good one.</td>
</tr>
</tbody>
</table>

0827:31

CAM-2 cruise power. props?

0827:32

CAM-1 set.

0827:33

CAM-2 engine gauges?

0427:35

CAM-1 checked.
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>Time</th>
<th>Source</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0821:31</td>
<td>CAM-1</td>
<td>battery?</td>
</tr>
<tr>
<td>0821:45</td>
<td>CAM-2</td>
<td>Off, I'll leave it Off.</td>
</tr>
<tr>
<td>0827:47</td>
<td>CW-2</td>
<td>sounds good. interiors exteriors? Interiors are on. exteriors?</td>
</tr>
<tr>
<td>0821:32</td>
<td>CAW-1</td>
<td>you can kick the landing lights off. that's what we do. you know your call whenaver you want to turn 'em off.</td>
</tr>
<tr>
<td>0821:51</td>
<td>CAW-2</td>
<td>okay we'll get a little ways away from here anyway.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>okay I'm gunna turn this off.</td>
</tr>
</tbody>
</table>

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>Time</th>
<th>Source</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0828:10</td>
<td>DEP</td>
<td>Regional Express eight sixty one climb and maintain five thousand fly headin' two seven zero.</td>
</tr>
<tr>
<td>0830:35</td>
<td>RDO-2</td>
<td>goin' right to two eight zero ah eight sixty one we're level five thousand.</td>
</tr>
<tr>
<td>0830:42</td>
<td>CAM-1</td>
<td>did you make the station call?</td>
</tr>
<tr>
<td>0830:44</td>
<td>CAM-2</td>
<td>yeah I already did that.</td>
</tr>
<tr>
<td>0830:45</td>
<td>chn-1</td>
<td>okay.</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0830:46 CAM-2</td>
<td>all set.</td>
</tr>
<tr>
<td>0834:13 CAM-2</td>
<td>I suggest why don't we turn a little bit I'm punna ask him a little bit southward for weather. This isn't too bad but ah.</td>
</tr>
<tr>
<td>0834:21 CM-1</td>
<td>See how bumpy it is when we get up there.</td>
</tr>
<tr>
<td>0834:24 CAM-2</td>
<td>what's that?</td>
</tr>
<tr>
<td>0834:45 CAM-1</td>
<td>does it give you level one through six or just tell you it's level three or greater?</td>
</tr>
<tr>
<td>0834:47 CAM-2</td>
<td>I can-- just a second.</td>
</tr>
<tr>
<td>0834:53 CAM-2</td>
<td>I'm writin' up this damn Intercom. okay what did you say again?</td>
</tr>
<tr>
<td>0834:57 CAM-1</td>
<td>ah it only flashes if you're level three or greater right?</td>
</tr>
<tr>
<td>0834:59 CM-2</td>
<td>right so you know I'm not worried unless you are I mean.</td>
</tr>
<tr>
<td>0834:43 CM-1</td>
<td>I just soon go through we're already behind.</td>
</tr>
<tr>
<td>0834:45 CAM-2</td>
<td>cool with me I mean cause I mean that's what I thought.</td>
</tr>
</tbody>
</table>

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0033:17 DEP</td>
<td>Regional Express eight sixty one climb and maintain six thousand.</td>
</tr>
<tr>
<td>0833:21 RGO-2</td>
<td>we're out of five for six thousand at this time naw ah eight sixty one.</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:14:47 CAM-2</td>
<td>look's like probably nothin' after it.</td>
</tr>
<tr>
<td>08:15:22 CAM-2</td>
<td>comin' up on a hundred to go your side.</td>
</tr>
<tr>
<td>08:15:43 CAM-2</td>
<td>thor o you go.</td>
</tr>
<tr>
<td>08:15:56 CAM-1</td>
<td>should be out of this in a minute.</td>
</tr>
<tr>
<td>08:15:58 CAM-2</td>
<td>yeah.</td>
</tr>
<tr>
<td>08:16:02 CAM-1</td>
<td>actually it's pretty smooth in here isn't it.</td>
</tr>
<tr>
<td>08:16:21 CAM-2</td>
<td>feels kinda good.</td>
</tr>
<tr>
<td>08:16:24 CAM-1</td>
<td>does this vector intercept an airways?</td>
</tr>
<tr>
<td>08:16:29 CAM-2</td>
<td>comin' in looks like comin' in real slow that's probably what he's doin'.</td>
</tr>
</tbody>
</table>

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:38:08 DEP</td>
<td>Regional Express eight sixty one contact Atlanta center one thirty four ninety five good day.</td>
</tr>
<tr>
<td>08:38:18 RW-2</td>
<td>one thirty four ninety five good day sir.</td>
</tr>
</tbody>
</table>

08:38:21 ((Atlanta Center controller started to be heard on the radio channel))

08:39:13 CAM-2 | smokin' when you get the bug smashes out they can't talk. |

08:39:24 CAM-2 | how would he know. |

08:39:33 CAM-2 | guess Louise. |
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0839:43</td>
<td>I think we got a sucker hole on the radar.</td>
</tr>
<tr>
<td>CAW-2</td>
<td></td>
</tr>
<tr>
<td>0839:52</td>
<td>yeah you're okay.</td>
</tr>
<tr>
<td>CAW-2</td>
<td></td>
</tr>
<tr>
<td>0840:07</td>
<td>this guy's pissin' me off.</td>
</tr>
<tr>
<td>CAN-2</td>
<td></td>
</tr>
</tbody>
</table>

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0840:53</td>
<td>Atlanta Center Regional Express eight sixty one's with ye six thousand</td>
</tr>
<tr>
<td>RDO-2</td>
<td></td>
</tr>
<tr>
<td>0840:57</td>
<td>Regional Express eight sixty one</td>
</tr>
<tr>
<td>CTR</td>
<td>Atlanta center roger descent pilot, discretion maintain five thousand.</td>
</tr>
<tr>
<td>0841:04</td>
<td>"DO" to five thousand ah we're out of nix et this time ah sight aixty one.</td>
</tr>
<tr>
<td>RDO-2</td>
<td></td>
</tr>
<tr>
<td>0841:10</td>
<td>eight aixty one roger --.</td>
</tr>
<tr>
<td>CTR</td>
<td></td>
</tr>
<tr>
<td>0841:44</td>
<td>that's Talladega?</td>
</tr>
<tr>
<td>HOT-1</td>
<td></td>
</tr>
<tr>
<td>0841:54</td>
<td>okay ah -- thirty two miles out.</td>
</tr>
<tr>
<td>INT-2</td>
<td></td>
</tr>
<tr>
<td>0842:03</td>
<td>does he want us to resume own navigation?</td>
</tr>
<tr>
<td>INT-1</td>
<td></td>
</tr>
<tr>
<td>0842:09</td>
<td>ah.</td>
</tr>
<tr>
<td>INT-2</td>
<td></td>
</tr>
<tr>
<td>0842:10</td>
<td>I heard him say that. as far as I'm concerned I'm still on vectors two eight zero.</td>
</tr>
<tr>
<td>INT-1</td>
<td></td>
</tr>
<tr>
<td>0842:13</td>
<td>yeah two eight zero's fine. because we're on course anyway so let's just hold it.</td>
</tr>
<tr>
<td>INT-2</td>
<td></td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

TIME & SOURCE
CONTENT
0842:18
INT-1
yeah but we're slowly drifting off.
0842:22
INT-2
ah but turn that zero eight five to the course.
0842:28
INT-1
What's the course?
0842:29
INT-2
zero eight five inbound.
0842:32
INT-1
you mean zero six five?
0842:33
INT-2
zero eight five.
0842:38
INT-2
zero eight five.
0842:39
INT-1
then we're way off course.
0842:43
INT-2
east is zero nine zero.

AIR-GROUND COMMUNICATION

TIME & SOURCE
CONTENT
0842:44
CTR
Regional Express eight sixty one radar service is terminated contact Birmingham approach one two five point four five.
0843:03
INT-2
Birmingham Approach Controller was started to be heard on the radio)
0843:05
INT-2
you want to do the approach?
0843:07
INT-1
yes ** and in-range.
0843:13
INT-2
stand-by.
0844:44
INT-2
there's our altitude. comin' up on it.
<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0843:18 INT-1</td>
<td>okay.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0843:19 RDO-2</td>
<td>Birmingham approach good morning. Regional Express eight sixty one's with ya five thousand.</td>
</tr>
<tr>
<td>0843:25 APP</td>
<td>Regional Express eight sixty one. Birmingham roger ah standby just a moment.</td>
</tr>
<tr>
<td>0843:42 APP</td>
<td>Regional Express eight sixty one. Descend and maintain four thousand and ah continue direct Talladega if you're unable to get to the ah Anniston airport in sight, expect ah no delay for the ILS five from over Bogga. There is an area of weather southwest of Bogga on the final approach course about ah four to five miles. Anniston's reporting fifteen hundred scattered estimated ceiling one zero thousand broken visibility five with light rain fog and haze the wind is zero six zero at six altimeter three zero zero six.</td>
</tr>
<tr>
<td>0844:13 RDO-2</td>
<td>okay we're out of five thousand at this time for four thousand for the possible visual and ah if we don't see it we'll let you know for the ILS eight sixty one thank you.</td>
</tr>
<tr>
<td>0844:26 INT-1</td>
<td>okay.</td>
</tr>
<tr>
<td>0844:27 MTV-2</td>
<td>I'm gettin' you all dialed in standby.</td>
</tr>
<tr>
<td>0844:32 INT-2</td>
<td>the outer marker is located in there there's you marker beacon is ah it's on.</td>
</tr>
<tr>
<td>0844:38 RDO</td>
<td>((sound of beacon test tone)).</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

TIME & SOURCE

CONTENT

0844:42
INT-1
okay right now we're trackin' direct to the Talladega VOR.

0844:45
INT-2
that's correct.

0844:51
INT-2
there's our area of weather -- so --.

0845:00
INT-2
five hundred to go.

0845:13
INT-2
goose Louise.

0845:15
INT-1
this is fun.

0845:21
INT-1
in-range call's complete?

0845:22
INT-2
dh standby.

0845:24
INT-1
in-range checklist.

0845:25
INT-2
how much fuel?

0845:28
INT-2
how much?

0845:29
INT-1
4h you mean ah fuel?

0845:31
INT-2
how much fuel are we goin' to have? twelve hundred?

0845:32
INT-1
in with ah twelve hundred. out with twelve hundred.

0845:34
INT-2
okay ah ha light.

AIR-GROUND COMMUNICATION

TIME & SOURCE

CONTENT

0845:50
RDO-2
Anniston Base eight sixty one.
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0846:25</td>
<td>PA-2</td>
</tr>
<tr>
<td>0846:37</td>
<td>INT-2</td>
</tr>
<tr>
<td>0847:12</td>
<td>INT-1</td>
</tr>
<tr>
<td>0847:13</td>
<td>INT-2</td>
</tr>
<tr>
<td>0847:14</td>
<td>INT-1</td>
</tr>
<tr>
<td>0847:17</td>
<td>INT-2</td>
</tr>
<tr>
<td>0847:20</td>
<td>INT-1</td>
</tr>
</tbody>
</table>

TIME & SOURCE

CONTENT

0846:25

PA-2

Ah folks we're starting our descent into Anniston like to ask that you double check to see if your seat belt is fastened for landing at this time and any carry-on that you may have brought with you is stowed beneath the seat in front of you thank you.

0846:37

INT-2

Okay anyway in-range is complete. basically what they didn't reply but what I told me to do is she couldn't hear us. Is these radios are so poor that they were give that I just broadcasted in the blind and they were goin' to monitor for us but anyway station call is done cabin sign I just did. the passenger brief I got altimeter he gave us. windshield anti-ice we don't need. crew briefing ash if we don't get the visual here in a few miles we'll do the ILS if we have to. and exteriors?

0847:12

INT-1

Okay landing light's ah-

0847:13

INT-2

There you go,

0847:14

INT-1

Comin' on just turn them on and taxi.

0847:17

INT-2

Okay. Taxi won't do you any good until the gear comes down.

0847:20

INT-1

That's okay. It's on.

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0846:02</td>
<td>RDO-2</td>
</tr>
</tbody>
</table>

Anniston base eight sixty one assunin' you can hear us but we can't hear you. We got three people tor ya, one goin' through to Tuscaloosa twelve hundred in and out on the fuel see you in oh about oh five minutes.
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0847:21 INT-2</td>
<td>no problem.</td>
</tr>
<tr>
<td>0841:26 INT-1</td>
<td>I didn’t know that though.</td>
</tr>
<tr>
<td>0847:29 INT-1</td>
<td>and let’s see.</td>
</tr>
<tr>
<td>0847:32 INT-1</td>
<td>and ah you’ve got everything set up that you can except the localizer frequency right.</td>
</tr>
<tr>
<td>0841:36 INT-2</td>
<td>yeah for you and I'll get 'er in there for you.</td>
</tr>
<tr>
<td>0847:38 INT-1</td>
<td>and in-bound course is?</td>
</tr>
<tr>
<td>0847:39 INT-2</td>
<td>ah I'll wet it with my heading bug but I believe it's ah zero four nine so.</td>
</tr>
<tr>
<td>0847:45 INT-1</td>
<td>zero four nine inbound.</td>
</tr>
<tr>
<td>0847:46 INT-2</td>
<td>I'll just --.</td>
</tr>
</tbody>
</table>

AIR-GROUND COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0847:46 ADP</td>
<td>Regional express eight sixty one the new Anniston weather seven hundred scattered estimated ceiling one thousand five hundred broken nine thousand overcast three miles fog and haze, the seven hundred foot layer in an scattered variable six broken appears to be breaking up. The wind is zero nine zero at five kilometer three zero zero six</td>
</tr>
<tr>
<td>0848:05 KDO-2</td>
<td>eight sixty one thank ya.</td>
</tr>
<tr>
<td>0848:09 HOT-2</td>
<td>you want-.</td>
</tr>
<tr>
<td>0848:10 INT-2</td>
<td>you want to 90 around for the ILS?</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

TIME C
SOURCE
0848:19
INT-1
0848:23
INT-1
0848:26
INT-2
0848:27
INT-1
0848:28
INT-2
0848:31
INT-2
0848:37
INT-2
0848:39
INT-1
0848:40
INT-2
0848:44
INT-1
0848:46
INT-2
0848:49
INT-2

CONTENT

ask him distance from --.
that's okay I'll just.
we're ah minus six point one. we're five miles from Bogga.
go ahead and slow on up.
there you go keep the shiny side up.
Ah -.
there you should have moved your heading bug here you go I'll get you set in here.
okay let's go approach flaps.
speed checks comin' now.
didn't realize that your going to get this much on your first day did ya.

AIR-GROUND COMMUNICATION

TIME C
SOURCE
0848110
APP
0848:19
RDO-2

CONTENT

and a eight sixty one proceed
direct Bogga maintain four thousand 'til Bogga cleared localizer run-- 6:
ILS runway five approach.
direct direct to Bogga four thousand
And cleared for the ILS runway five.
eight sixty one thank you
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>Time</th>
<th>Source</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>0848:51</td>
<td>CAM</td>
<td>(sound of trim-in-motion beep)</td>
</tr>
<tr>
<td>0848:53</td>
<td>INT-1</td>
<td>well it's all kind of ganged up here on me a little fast.</td>
</tr>
<tr>
<td>0848:55</td>
<td>INT-1</td>
<td>got the localizer in?</td>
</tr>
<tr>
<td>0849:03</td>
<td>INT-2</td>
<td>workin' on it.</td>
</tr>
<tr>
<td>0849:06</td>
<td>INT-1</td>
<td>think we're goin' to go through it.</td>
</tr>
<tr>
<td>0849:08</td>
<td>INT-2</td>
<td>ah I'm goin' to kill somebody about these radios I can't get your frequency set.</td>
</tr>
<tr>
<td>0849:20</td>
<td>INT-2</td>
<td>there you go.</td>
</tr>
<tr>
<td>0849:22</td>
<td>INT-1</td>
<td>yup went through it</td>
</tr>
<tr>
<td>0849:24</td>
<td>INT-2</td>
<td>can you go around for it?</td>
</tr>
<tr>
<td>0849:26</td>
<td>INT-1</td>
<td>I bet you. I think we're right over the outer-.</td>
</tr>
<tr>
<td>0849:28</td>
<td>INT-2</td>
<td>we're right over Bogga. He kept us in real tight I mean God we're four and a half out that was uncalled for go ahead and drop your gear speed checks.</td>
</tr>
<tr>
<td>0849:43</td>
<td>INT-1</td>
<td>glide slope isn't even alive.</td>
</tr>
<tr>
<td>0850:00</td>
<td>INT-1</td>
<td>what's the minimum altitude I can descend to 'til I'm established?</td>
</tr>
<tr>
<td>0850:03</td>
<td>INT-2</td>
<td>'til established, twenty two hundred.</td>
</tr>
</tbody>
</table>
Intra-Cockpit Communication

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0850:41 INT-2</td>
<td>okay here it comes</td>
</tr>
<tr>
<td>0850:46 INT-2</td>
<td>I'm thinkin'.</td>
</tr>
<tr>
<td>0850:53 INT-1</td>
<td>ah we gotta go missed on this.</td>
</tr>
<tr>
<td>0850:55 INT-2</td>
<td>just a minute - there you go - there your gonna' about right through it again - there you go ###.</td>
</tr>
<tr>
<td>0851:08 INT-2</td>
<td>that's why I was kind' wonderin' you know hay.</td>
</tr>
<tr>
<td>0851:12 INT-2</td>
<td>okay we gettin' in close keep 'er goin'.</td>
</tr>
<tr>
<td>0851:16 INT-2</td>
<td>you're okay.</td>
</tr>
<tr>
<td>0851:17 INT-1</td>
<td>hopin' no one on here's a pilot.</td>
</tr>
<tr>
<td>0851:20 INT-2</td>
<td>well one guy put on with a helmet bag.</td>
</tr>
</tbody>
</table>

Air-Ground Communication

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0850:06 APP</td>
<td>Regional express eight sixty one that ah weather's south of ah a Bagga is moving northbound end the leading edge appears to be about two miles southwest or Bagga.</td>
</tr>
<tr>
<td>0850:18 RDO-2</td>
<td>eight sixty one thank you very much we're out of four thousand for the localizer at this time and we're inside of Bagga.</td>
</tr>
<tr>
<td>0850:23 APP</td>
<td>yes sir and advise procedure turn inbound.</td>
</tr>
<tr>
<td>0850:28 RDO-2</td>
<td>6th procedure turn inbound complete.</td>
</tr>
</tbody>
</table>
INTRA-COCKPIT COMMUNICATION

<table>
<thead>
<tr>
<th>TIME & SOURCE</th>
<th>CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0851:77 INT-2</td>
<td>okay there you go. roll out. you're kosher.</td>
</tr>
<tr>
<td>0851:26 INT-2</td>
<td>see you you had about a ninety degree intercept there I was kind of like whom.</td>
</tr>
<tr>
<td>0851:30 INT-2</td>
<td>through twenty two we're 15.</td>
</tr>
<tr>
<td>0851:31 INT-2</td>
<td>okay we're on our way.</td>
</tr>
<tr>
<td>0851:33 INT-1</td>
<td>there's the glide slope.</td>
</tr>
<tr>
<td>0851:34 INT-2</td>
<td>okay watch your airspeed. one fifteen on the airspeed.</td>
</tr>
<tr>
<td>0851:36 INT-2</td>
<td>we're inside through twenty two we can continue our descent on down. we're way high.</td>
</tr>
<tr>
<td>0851:43 INT-1</td>
<td>okay is the glide slope working?</td>
</tr>
<tr>
<td>0851:45 INT-2</td>
<td>nope I'm not gettin' any.</td>
</tr>
<tr>
<td>0851:48 INT-2</td>
<td>so with no glide slope, we're down to eleven hundred.</td>
</tr>
<tr>
<td>0851:50 INT-1</td>
<td>you got your right frequency in thoro?</td>
</tr>
<tr>
<td>0851:51 INT-2</td>
<td>five hundred - one eleven five double ohock yup.</td>
</tr>
<tr>
<td>0852:13 INT-1</td>
<td>what's our missed approach point now?</td>
</tr>
<tr>
<td>0852:15 INT-2</td>
<td>missed approach at the middle marker ah-.</td>
</tr>
</tbody>
</table>