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DEVELOPMENT OF AN EMPIRICALLY-BASED INDEX OF AIRCRAFT MIX

Aircraft mix has been proposed as one of the traf-
fi c characteristics that contributes to sector complexity 
in en route air traffi c control (Robertson, Grossberg, 
& Richards, 1979; Federal Aviation Administration 
[FAA], 1984; Grossberg, 1989; Mogford, Murphy, 
Roske-Hofstrand, Yastrop, & Guttman, 1994). “Sector 
complexity” describes static and dynamic characteristics 
of the air traffi c control environment that combine with 
controller taskload (i.e., the air traffi c events to which the 
controller is exposed) to produce controller workload (i.e., 
the controllers’ reaction to and perceived effort involved 
in managing these events) (Grossberg, 1989; Manning, 
Mills, Fox, Pfl eiderer, & Mogilka, 2001). As changes 
are introduced into the air traffi c control environment 
such as the recent implementation of the Display System 
Replacement (DSR), or the proposed introduction of 
“free fl ight” (Radio Technical Commission for Aeronautics 
[RTCA], 1995) it becomes increasingly important that 
measures are developed to evaluate the impact of these 
changes on controller performance. In spite of a growing 
body of work dedicated to the measurement of workload, 
taskload, sector complexity, and controller performance 
(for a list of 162 of these measures, see Hadley, Guttman, 
& Stringer, 1999) little attention has been focused on 
quantifying aircraft mix. This is possibly because, until 
recently, aircraft mix had not been clearly defi ned.

In the initial studies identifying aircraft mix as a 
factor contributing to sector complexity, aircraft mix 
was assumed to refer to problems associated with the 
disparate performance capabilities of propeller and jet 
aircraft (e.g., Robertson, Grossberg, & Richards, 1979; 
Grossberg, 1989). In the preliminary stages of a study 
conducted by Mogford and co-workers (1994), aircraft 
mix was defi ned as the proportion of commercial, private, 
and military aircraft. The number of aircraft fl ying Visual 
Flight Rules (VFR) versus Instrument Flight Rules (IFR) 
was considered to be a distinct factor. A subject-matter 
expert who provided detailed factor defi nitions introduced 
engine type as an element of aircraft mix. In the fi nal list 
of 19 sector complexity factors, aircraft mix was defi ned as 
“VFR, IFR, props, turboprops, jets, etc” (p.37). Though 
this defi nition seems extensive, these verbal representa-
tions of aircraft mix might be only marginally related 
to the parameters necessary for quantifi cation of the 
construct.

Pfl eiderer (2000) conducted an investigation of the 
salient features of aircraft mix as it relates to aircraft per-
formance characteristics. For this analysis, 30 Certifi ed 

Professional Controllers (CPCs) from various Air Route 
Traffi c Control Centers (ARTCCs) across the United 
States provided average speed, climb, and descent rate 
estimates for a sample of 30 distinct aircraft types. A 
matrix of squared Euclidean distances derived from 
summary estimates (i.e., means of speed, climb, and 
descent) was used to construct a classical multidimen-
sional scaling (CMDS) model of the aircraft. Multiple 
regression interpretation of the two-dimensional solution 
revealed that Dimension 1 was related to engine type, 
whereas Dimension 2 was associated with weight class. 
The results of the analysis were interpreted as evidence 
of performance-based prototypes. However, it was also 
evident from the position of the elements (i.e., aircraft 
types) in the derived stimulus space that it might be 
possible to develop a measure of aircraft mix using these 
two easily-obtained variables.

The present study is a continuation of that investi-
gation (i.e., Pfl eiderer, 2000). Phase I was designed to 
determine whether controllers’ perceptions of aircraft 
performance and the actual recorded performance 
of aircraft were comparable (i.e., would demonstrate 
similar dimensionality in repeated CMDS analysis). For 
this analysis, a matrix of squared Euclidean distances of 
controller estimates of mean speed, climb, and descent 
rates for 24 distinct aircraft types was compared with a 
matrix of mean speed, climb, and descent rates of the 
same aircraft types calculated from routinely-recorded 
System Analysis Recording (SAR) data. It was expected 
that the two dimensions noted in the previous CMDS 
analysis of controllers’ perceptions would be the same as 
those in the SAR sample, but it was possible that the two 
matrices might differ with regard to the relative salience 
and importance of each dimension. Characteristics of the 
CMDS model of SAR data could be used to confi rm, 
amend, or replace previously-gathered information re-
garding the salient features of aircraft mix.

Phase II focused on the development of an index of 
aircraft mix based on the results of the Phase I multidi-
mensional scaling analyses. Because multidimensional 
scaling translates patterns of responding into patterns of 
elements in a dimensional space, it should be possible to 
assign base values to aircraft and then calculate distances 
representing differences in performance capabilities to 
compute an aircraft mix index.

Finally, the aircraft mix index was computed for all 
aircraft present in a particular traffi c sample. If the index 
has suffi cient variability and precision, it should be able 
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to discriminate between low-altitude sectors (i.e., sectors 
with a high probability of aircraft with disparate perfor-
mance capabilities) and high-altitude sectors (i.e., sectors 
with a low probability of aircraft mix due to the relatively 
lower service ceilings of many piston-driven aircraft). If 
the aircraft mix index passes the “discriminability” test, 
future research will be conducted to determine whether 
or not it adds unique information to an existing suite of 
Performance and Objective Workload Evaluation Re-
search (POWER) measures (Mills, Pfl eiderer, & Manning, 
2002). It is possible that the complexity associated with 
aircraft mix is redundant with other variables. It is also 
possible that aircraft mix is characteristic of so few sectors 
so as to be of little use within the larger suite of measures. 
One thing is certain:  Aircraft mix’s relative contribution 
to sector complexity and controller workload cannot be 
assessed until it has been quantifi ed.

Phase I:  Comparison of SAR Data and 
Controller Estimates

Method
Design and Procedure

Multidimensional scaling refers to a group of descriptive 
procedures that transform data into mapped elements in 
one or more spatial dimensions (Kruskal & Wish, 1978). 
The appropriate data for CMDS analysis are proximities, 
numbers that indicate the similarity or dissimilarity of 
a set of objects. Proximities may be obtained directly or 
derived mathematically from a set of variables. In this 
application, two matrices of dissimilarity measures were 
computed: One matrix was based on summary controller 
estimates of aircraft performance, the other was based 
on summary measures of aircraft performance derived 
from SAR data.

Controller Estimate Matrix. This matrix represents 
a subset of the data used in a previous study (Pfl eiderer, 
2000) in which 30 Certifi ed Professional Controllers 
(CPCs) provided estimates of average cruising speed, climb 
rate, and descent rate for each of 30 distinct aircraft types. 
In the present study, mean speed, climb, and descent rate 
estimates were calculated from data provided by 24 of the 
original 30 controllers for 24 of the original aircraft types. 
The subset of 24 controllers was selected from the larger 
sample because these CPCs met currency requirements 
at the same ARTCCs represented in the SAR sample:  
Kansas City (N = 17) and Boston (N = 17) and Boston (N N = 7). The aircraft N = 7). The aircraft N
list was reduced because 6 of the 30 aircraft types did not 
appear in the Kansas City or Boston airspace during the 
time sampled. The squared Euclidean distance between 
vectors of controller summary estimates was computed 
to create a matrix of distances representing controllers’ 

perceptions of each aircraft’s capabilities relative to other 
aircraft in the sample. For example, if summary estimates 
for the fi rst and second aircraft were:

The squared Euclidean distance for these aircraft 
would be:  (1-4)2 + (2-5) 2 + (3-6) 2 = 27. A table listing 
summary controller estimates used to compute the matrix 
of distances is provided in Appendix A. For information 
about participants’ professional experience, detailed de-
scriptions of the materials used to collect estimates, and 
other points of methodology, see Pfl eiderer (2000).

SAR Data Matrix. The information used to construct 
this matrix was recorded at the Kansas City and Boston 
centers. The Kansas City sample consisted of 168 hours 
of continuous SAR data recorded from January 19, 1999 
through January 25, 1999. The Boston sample comprised 
a total of 27 hours of SAR data, recorded on March 16, 
1998 from 14:00 to 20:59 ZULU (7 hours); March 17, 
1998, from 14:00 to 20:59 ZULU (7 hours); March 19, 
1998 from 15:00 to 19:59 ZULU (5 hours); and March 
20, 1998, from 15:00 to 22:59 ZULU (8 hours). Raw 
data were extracted through the use of “log” and “track” 
reports produced by the Data Analysis Reduction Tool 
(DART). Within the sample time frame, 7095 fl ights 
corresponded to the selected aircraft types. The modal 
fl ight duration of these fl ights was 27 minutes. The modal 
number of updates (observations) per fl ight was 283.

Aircraft type was derived from designators (alpha-
numeric labels that indicate the make and model of an 
aircraft) that are printed on the fl ight progress strip (FPS) 
and appear within the fl ight plan readout display. The 
contents of both fl ight progress strips and fl ight plan 
readouts are recorded by the Host system and output in 
the DART log report.

Mean climb and descent rate estimates were calculated 
from altitude information recorded in the DART track 
reports. Climb and descent rate estimates represent the 
amount of change divided by duration of change for all 
detected altitude changes converted into feet per minute 
(fpm) and then averaged across changes for each aircraft 
(set to missing if no altitude changes were detected). 
For example, from 8:12:08 to 8:17:02 fl ight XMPL01 
climbed from 26,400 feet to 33,000 feet – a total of 6,600 
feet in 4 minutes and 54 seconds (1,454 fpm). From 8:
30:00 to 8:35:00,  XMPL01 climbed from 33,000 feet 
to 35,000 feet – a total of 2,000 feet in 5 minutes (400 
fpm). The climb rate estimate for XMPL01 would then 
be 927 fpm (the mean of the two changes.)  Mean climb 
and descent rate estimates were calculated in this 
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 manner for each flight and then averaged across fl ights 
for each designator. Of course, not all fl ights made altitude 
changes during the time sampled, and so the number of 
observations used to calculate mean climb and descent 
rates varied between aircraft designators. Appendix A lists 
the number of climb and descent rate observations upon 
which mean climb and descent rates were based.

Mean speed estimates were calculated by fi rst comput-
ing the mean of all ground speeds recorded in the DART 
track report for each fl ight (distinguished by a unique 
Aircraft Identifi er [AID] Computer Identifi er [CID] 
combination) and then averaging across fl ights for each 
designator. The number of updates per fl ight varied as a 
function of control time. However, the number of speed 
estimates used to compute the average speed for each des-
ignator is equal to the number of aircraft corresponding 
to that designator (column N in the table in Appendix 
A). Please note that, unlike the computation of mean 
climb and descent rates, mean speed calculations did not 
involve speed changes. The measure simply represents the 
average speed for each aircraft type based on the average 
ground speed for all individual aircraft of that type.

Squared Euclidean distances were calculated from mean 
speed, climb, and descent rates in the same manner as 
controller observations. Distances in the resulting matrix 
represented each aircraft’s performance relative to other 
aircraft in the sample.

Variables for Interpretation of CMDS Models. A separate 
set of variables was collected for the purpose of interpret-
ing the dimensions of the CMDS models. The engine 
number, engine type, and weight class of each aircraft 
was obtained from information provided in Appendix 
A of 7110.65N, the most recent version of Air Traffi c 
Control (FAA, 2002).Control (FAA, 2002).Control

Custom Software. As mentioned previously, the SAR 
data matrix was computed from DART log and track 
information for the 7,095 fl ights with aircraft designa-
tors corresponding to the selected aircraft types. These 
data were extracted from a considerably larger sample of 
fl ights. Consequently, it was impractical to manipulate the 
raw log and track text reports manually. Therefore, two 
Visual Basic programs were used to extract and organize 
information and to compute the summary measures. The 
National Airspace System (NAS) Data Management Sys-
tem (NDMS) program transforms the information in 
log and track reports into organized database fi les that 
provide effi cient storage and access (for a more detailed 
description of this program and its output, see Mills, 
Pfl eiderer, & Manning, 2002). A second program, Aircraft 
Mix – Phase I, was specially designed to derive pertinent 
information (i.e., aircraft type, speed, altitude) for each 

fl ight from NDMS output tables, compute summary 
measures, and print this information to SPSS database 
fi les for analysis.

Results and Discussion

Controller estimates of speed, climb, and descent rates 
were compared with mean speed, climb, and descent rates 
computed from SAR data using Pearson’s product moment 
correlation coeffi cient. All associations were statistically 
signifi cant at the p < .01 level. However, the magnitude 
of the correlation between SAR and ATC speed estimates 
was slightly higher than the others with an r = .94. The r = .94. The r
comparison of mean ATC climb rate estimates and mean 
climb rates calculated from SAR data produced an r = r = r
.89, whereas the association between ATC descent rate 
estimates and SAR descent rate measures resulted in an 
r = .79.r = .79.r

Classical Multidimensional Scaling Analyses (CMDS)
Dimensionality. SAR data and ATC estimate matrices 

were submitted to separate, non-metric CMDS analyses. 
The squared correlation is a measure of fi t that describes 
the relationship between the original distances and the 
derived stimulus coordinates. Squared correlations of the 
two-dimensional (r2r2r  = .9990) and three-dimensional (r2r2r  = 
.9989) models of SAR data, and of the two-dimensional 
(r2r2r  = .9995) and three-dimensional (r2r2r  = .9996) models of 
ATC estimates suggest that the proximities were described 
well in either two or three dimensions.

Kruskal’s stress formula 1 is a measures of how well the 
confi guration represents the original data. This measure 
ranges from zero (best fi t) to one (worst fi t). Stress values 
for the two-dimensional (.0164) and three-dimensional 
(.0171) models of SAR data, and of the two-dimensional 
(.0123) and three-dimensional (.0116) models of ATC 
estimates indicated that the confi guration fi t the data well 
in either two or three dimensions. However, because stress 
is not a reliable measure in a degenerate solution, scatter-
plots describing the relationship between proximities and 
derived distances (i.e., scatterplot of non-linear fi t) and 
disparities (i.e., transformation scatterplot) were examined 
for both analyses. None of the scatterplots demonstrated 
patterns characteristic of a degenerate solution. (For an 
explanation of the causes and caveats of degenerate solu-
tions, see Kruskal & Wish, 1978, p. 29-30.)

In both analyses, the two- and three-dimensional solu-
tions demonstrated excellent fi t. Though the three-dimen-
sional solution demonstrated the best fi t for the model 
of ATC estimates, examination of stimulus coordinates 
and regression analysis failed to uncover any distinctive, 
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interpretable features of the third dimension. Additional 
dimensions are of little use if they fail to contribute to the 
interpretation of the solution (Kruskal & Wish, 1978). 
Moreover, the two-dimensional model demonstrated the 
best fi t for the SAR data set. Therefore, the two-dimen-
sional solution was selected for interpretation.

Regression Method of Dimensional Interpretation. The 
most objective technique available for dimensional in-
terpretation is the regression method in which variables 
believed to correspond with the stimulus confi guration 
are regressed over coordinates. For this application, engine 
type was coded according to performance capabilities 
associated with each engine type, from lowest (piston-
driven) to highest (jet propelled). Weight class was also 
coded into three ordered levels:  Small aircraft are those of 
41,000 lbs. or less maximum certifi cated takeoff weight; 
Large aircraft are those of more than 41,000 lbs. up to 
255,000 lbs. maximum certifi cated takeoff weight; Heavy 
aircraft are those capable of takeoff weights of more than 
255,000 lbs. whether or not they are operating at this 
weight during a particular phase of fl ight (FAA, 2002).

According to Kruskal and Wish (1978), two condi-
tions are necessary for satisfactory multiple regression 
interpretation of a dimension. First, the multiple correla-
tions must be extremely high (correlations in the .90s are 
recommended, although those in the .70s will suffi ce). 
As shown in Tables 1 and 2, only engine type and weight 
class achieved the recommended degree of association 
with the dimensions. In general, the two data sets were 
remarkably similar:  Correlations were in the .90’s for 
engine type and in the .80’s for weight class. However, 
the two models differed with respect to the relationship 
between the dimensions and these criterion variables. 
Notice that in the model of SAR data, the standardized 
regression weights of both engine type and weight class 
are more closely associated with Dimension 1 than with 
Dimension 2. However, in the confi guration derived from 
ATC estimates, the standardized regression weights of 
engine type were more closely associated with Dimen-
sion 1, whereas weight class was more closely associated 
with Dimension 2.
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Neighborhood Interpretation of the CMDS Confi gura-
tions. Neighborhood interpretation focuses on identify-
ing discrete clusters of elements in the CMDS stimulus 
confi guration. Because neighborhood interpretation 
capitalizes on small distances, this method can some-
times reveal patterns in the data that are not discernable 
using multiple regression, which attends mostly to large 
distances. In this particular application, neighborhood 
interpretation was considered to be an important supple-
ment to dimensional interpretation because it was highly 
possible that characteristics of the confi guration might 
correspond with categorical variables unsuitable for 
multiple regression.

In general, the confi gurations (Figures 1 and 2) were 
similar. In both models, Group A consisted primarily 
of piston-driven aircraft. The exception to this was the 
C208 (Cessna Caravan), a turboprop that did not per-
form like other turboprops. (As a point of interest, most 
of the controllers in the sample misclassifi ed the C208 as 
a piston-driven aircraft.)  Group B consisted entirely of 
turboprops. In both confi gurations, all aircraft positioned 
to the right of the dashed gray line are jets. However, the 
number of groups differed between the confi gurations. 
In the model of ATC estimates, high-performance jets 
are clearly distinguished from other jet aircraft (Group 
D in Figure 2). In the SAR data model, jets formed a 
single, loosely-knit group.

Perhaps the most striking difference between the 
confi gurations had to do with weight class. Most of the 
aircraft types in the top portion of the stimulus confi gu-
ration of ATC estimates (Figure 2) are of the Small and 
Large weight classes:  Heavy aircraft are positioned in the 
bottom portion of the confi guration. This refl ects the as-
sociation of weight class with Dimension 2 in the model 
of ATC estimates. In the stimulus confi guration of SAR 
data (Figure1), Heavy aircraft are scattered throughout 
the cluster of jets (Group C).

Conclusions

The clusters of aircraft identifi ed in the neighborhood 
interpretation of the stimulus confi gurations present the 
simplest means by which to code aircraft types for the 
aircraft mix variable. For the most part, these groups 
were defi ned by engine type. Though high-performance 
jets were not clearly distinguished from other jets in the 
confi guration of SAR data, it seems reasonable to classify 
these aircraft separately in the computation of the aircraft 
mix index. On the average, the controllers who contributed 
estimates for the ATC sample had approximately 10 years 
of experience at their current ARTCCs. The SAR sample 
represented 195 hours of traffi c. Given the concordance 
of the two matrices in other respects, it is possible that 
high-performance jets might have emerged as a separate 
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group in the SAR confi guration had the sample been large 
enough to better approximate the years of experience 
represented by the controllers in the ATC sample.

It is unlikely that the incorporation of weight class 
is crucial to the precision of the aircraft mix index. To 
begin with, weight class is a correlate of engine type (i.e., 
most piston-driven aircraft are Small, most turboprops 
are Large, all Heavy aircraft are jets). Because of the 
nature of this relationship, incorporation of the weight 
class dimension would only involve jet aircraft (i.e., 
separating jets into Heavy/other subgroups). However, 
the tight clustering of the jet aircraft in Group C of the 
stimulus confi guration of ATC estimates (Figure 2) sug-
gests that this differentiation is probably not necessary. 
Heavy aircraft may perform somewhat differently than 
other jet aircraft, but this difference appears to be only 
slightly perceptible to air traffi c controllers (other than 
procedural considerations addressing the wake turbulence 
associated with Heavy aircraft and B757s).

Phase II:  Development and Testing of the 
Aircraft Mix Index

Method
Sample

The sample selected for testing the aircraft mix index 
consisted of SAR data from 15 high-altitude sectors and 
13 low-altitude sectors within the Kansas City airspace. 
The Kansas City ARTCC was selected because of the 

availability of sector information for that particular center 
(e.g., sector strata, number of underlying airports, sector 
combinations). The data were recorded on Friday, De-
cember 22, 1999 from 15:15 to 16:15 (local time) when 
most sectors within the Kansas City en route center were 
open (i.e., sector combinations were minimal).

Procedure
Given the fact that a total of 562 aircraft crossed the 

Kansas City airspace during the hour sampled, it would 
be highly impractical to calculate the aircraft mix index 
manually. Therefore, a Visual Basic program (Aircraft 
Mix – Phase II) was written to accomplish this task. This 
program was designed to process SAR information stored 
in NDMS output tables on a sector-by-sector basis. Based 
on Phase I results, aircraft were assigned aircraft type codes 
with values ranging from one to four. Piston-driven aircraft 
were assigned a value of 1, turboprops a value of 2. With 
some exceptions, jet aircraft were assigned a value of 3. 
High-performance jets (i.e., aircraft types that perform 
within similar parameters as the aircraft in Group D of 
Figure 2) are coded as such in the system fi les of all en 
route Host computers. These fi le codes were used to assign 
a value of 4 to all high-performance jets in the sample. 
Program algorithms were written to produce a half matrix 
of aircraft type differences between pairs of aircraft within 
a given sector. Table 3 lists aircraft type differences for the 
sample of aircraft in Figure 3. For instance, DAL589 is a 
commercial jet and has been assigned an aircraft mix code 
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of 3. N149RJ is a turboprop with an aircraft mix code 
of 2. The aircraft mix difference between N149RJ and 
DAL589 is 1. The fi nal step in the computation of the 
index involved summing all items in the half matrix. For 
example, the aircraft mix index for the group of aircraft in 
Figure 3 is 17.00 (see Table 3). For each minute of data, 
the aircraft mix index was calculated for all aircraft pairs 
at approximately 12-second intervals and stored in an 
array. At the end of each minute, the mean and standard 
deviation of the aircraft mix measure were calculated and 
sent to an array for the purpose of calculating the mean 
and standard deviation of the aircraft mix measure for 
each 15-minute interval processed.

Results and Discussion

Computing aircraft mix at 15-minute intervals for 
high- and low-altitude sectors clearly did not produce 
a normal distribution (evidenced by the discrepancies 
between the means and medians of the distributions 
described in Table 4). For that reason, the Mann-Whit-
ney U statistic (Mann & Whitney, 1947) was employed U statistic (Mann & Whitney, 1947) was employed U
to examine whether the aircraft mix index was reliably 
different in high- versus low-altitude sectors. The Mann-
Whitney U is a distribution-free statistic that tests the U is a distribution-free statistic that tests the U
null hypothesis that two sets of observations were sampled 
from identical populations. The minimal assumption of 
the Mann-Whitney U is the independence of observations U is the independence of observations U
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(Marascuilo & McSweeney, 1977). Given the fact that 
aircraft cannot be controlled by more than one sector at 
any given time, it logically follows that aircraft in one 
sector were independent of aircraft in another within 
each of the 15-minute intervals.

As shown in Table 5, the null hypothesis was rejected 
for all comparisons, indicating that the distributions of the 
aircraft mix index were reliably different in high- versus 
low-altitude sectors. The sum of ranks assigned to each 
of the original values for high- and low-altitude sector 
groups is consistent with the expectation that the mix 
of aircraft with different performance characteristics 
(ergo the aircraft mix index) would be higher in low-
altitude airspace.

Conclusions

Because the aircraft mix index was able to reliably 
detect distribution differences in high-and low-altitude 
sectors, the measure warrants further investigation. Plans 
for future tests include conducting a CMDS analysis of 
a much larger sample of aircraft types to include heli-
copters and other rotorcraft to determine whether they 
fi t into one of the existing aircraft categories or require 
the introduction of a separate code. Then, the aircraft 
mix index will be introduced into the current set of Per-
formance and Objective Workload Evaluation Research 
(POWER) variables (Mills, Pfl eiderer, & Manning, 2002) 
to determine whether or not the aircraft mix index adds 
unique information to that set. Each step in this process 
brings us closer to determining the relative contribu-
tion of aircraft mix to sector complexity. Constructing 

the elements that create sector complexity may help us 
understand the nature of controller workload, and thus 
provide insight into the relationship between controller 
workload and performance.
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