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DEVELOPMENT OF AN EMPIRICALLY-BASED INDEX OF AIRCRAFT MIX

Aircraft mix has been proposed as one of the traf-
fic characteristics that contributes to sector complexity
in en route air traffic control (Robertson, Grossberg,
& Richards, 1979; Federal Aviation Administration
[FAA], 1984; Grossberg, 1989; Mogford, Murphy,
Roske-Hofstrand, Yastrop, & Guttman, 1994). “Sector
complexity” describes static and dynamic characteristics
of the air traffic control environment that combine with
controller taskload (i.e., the air traffic events to which the
controller is exposed) to produce controller workload (i.e.,
the controllers’ reaction to and perceived effort involved
in managing these events) (Grossberg, 1989; Manning,
Mills, Fox, Pfleiderer, & Mogilka, 2001). As changes
are introduced into the air traffic control environment
such as the recent implementation of the Display System
Replacement (DSR), or the proposed introduction of
“freeflight” (Radio Technical Commission for Aeronautics
[RTCAJ, 1995) it becomes increasingly important that
measures are developed to evaluate the impact of these
changes on controller performance. In spite of a growing
body of work dedicated to the measurement of workload,
taskload, sector complexity, and controller performance
(foralist of 162 of these measures, see Hadley, Guttman,
& Stringer, 1999) little attention has been focused on
quantifying aircraft mix. This is possibly because, until
recently, aircraft mix had not been clearly defined.

In the initial studies identifying aircraft mix as a
factor contributing to sector complexity, aircraft mix
was assumed to refer to problems associated with the
disparate performance capabilities of propeller and jet
aircraft (e.g., Robertson, Grossberg, & Richards, 1979;
Grossberg, 1989). In the preliminary stages of a study
conducted by Mogford and co-workers (1994), aircraft
mix was defined as the proportion of commercial, private,
and military aircraft. The number of aircraft flying Visual
Flight Rules (VFR) versus Instrument Flight Rules (IFR)
was considered to be a distinct factor. A subject-matter
expertwho provided detailed factor definitions introduced
engine type as an element of aircraft mix. In the final list
of 19 sector complexity factors, aircraft mix was defined as
“VFR, IFR, props, turboprops, jets, etc” (p.37). Though
this definition seems extensive, these verbal representa-
tions of aircraft mix might be only marginally related
to the parameters necessary for quantification of the
construct.

Pfleiderer (2000) conducted an investigation of the
salient features of aircraft mix as it relates to aircraft per-
formance characteristics. For this analysis, 30 Certified

Professional Controllers (CPCs) from various Air Route
Traffic Control Centers (ARTCCs) across the United
States provided average speed, climb, and descent rate
estimates for a sample of 30 distinct aircraft types. A
matrix of squared Euclidean distances derived from
summary estimates (i.e., means of speed, climb, and
descent) was used to construct a classical multidimen-
sional scaling (CMDS) model of the aircraft. Multiple
regression interpretation of the two-dimensional solution
revealed that Dimension 1 was related to engine type,
whereas Dimension 2 was associated with weight class.
The results of the analysis were interpreted as evidence
of performance-based prototypes. However, it was also
evident from the position of the elements (i.e., aircraft
types) in the derived stimulus space that it might be
possible to develop a measure of aircraft mix using these
two easily-obtained variables.

The present study is a continuation of that investi-
gation (i.e., Pfleiderer, 2000). Phase I was designed to
determine whether controllers’ perceptions of aircraft
performance and the actual recorded performance
of aircraft were comparable (i.e., would demonstrate
similar dimensionality in repeated CMDS analysis). For
this analysis, a matrix of squared Euclidean distances of
controller estimates of mean speed, climb, and descent
rates for 24 distinct aircraft types was compared with a
matrix of mean speed, climb, and descent rates of the
same aircraft types calculated from routinely-recorded
System Analysis Recording (SAR) data. It was expected
that the two dimensions noted in the previous CMDS
analysis of controllers” perceptions would be the same as
those in the SAR sample, but it was possible that the two
matrices might differ with regard to the relative salience
and importance of each dimension. Characteristics of the
CMDS model of SAR data could be used to confirm,
amend, or replace previously-gathered information re-
garding the salient features of aircraft mix.

Phase II focused on the development of an index of
aircraft mix based on the results of the Phase I multidi-
mensional scaling analyses. Because multidimensional
scaling translates patterns of responding into patterns of
elements in a dimensional space, it should be possible to
assign base values to aircraft and then calculate distances
representing differences in performance capabilities to
compute an aircraft mix index.

Finally, the aircraft mix index was computed for all
aircraft present in a particular traffic sample. If the index
has sufficient variability and precision, it should be able



to discriminate between low-altitude sectors (i.e., sectors
with a high probability of aircraft with disparate perfor-
mance capabilities) and high-altitude sectors (i.e., sectors
with a low probability of aircraft mix due to the relatively
lower service ceilings of many piston-driven aircraft). If
the aircraft mix index passes the “discriminability” test,
future research will be conducted to determine whether
or not it adds unique information to an existing suite of
Performance and Objective Workload Evaluation Re-
search (POWER) measures (Mills, Pfleiderer, & Manning,
2002). It is possible that the complexity associated with
aircraft mix is redundant with other variables. It is also
possible that aircraft mix is characteristic of so few sectors
so as to be of little use within the larger suite of measures.
One thing is certain: Aircraft mix’s relative contribution
to sector complexity and controller workload cannot be
assessed until it has been quantified.

Phase I: Comparison of SAR Data and
Controller Estimates

Method
Design and Procedure
Multidimensional scaling refers to agroup of descriptive
procedures that transform data into mapped elements in
one or more spatial dimensions (Kruskal & Wish, 1978).
The appropriate data for CMDS analysis are proximities,
numbers that indicate the similarity or dissimilarity of
a set of objects. Proximities may be obtained directly or
derived mathematically from a set of variables. In this
application, two matrices of dissimilarity measures were
computed: One matrix was based on summary controller
estimates of aircraft performance, the other was based
on summary measures of aircraft performance derived
from SAR data.
Controller Estimate Matrix. This matrix represents
a subset of the data used in a previous study (Pfleiderer,
2000) in which 30 Certified Professional Controllers
(CPCs) provided estimates of average cruising speed, climb
rate, and descent rate for each of 30 distinctaircraft types.
In the present study, mean speed, climb, and descent rate
estimates were calculated from data provided by 24 of the
original 30 controllers for 24 of the original aircraft types.
The subset of 24 controllers was selected from the larger
sample because these CPCs met currency requirements
at the same ARTCCs represented in the SAR sample:
Kansas City (V= 17) and Boston (N = 7). The aircraft
list was reduced because 6 of the 30 aircraft types did not
appear in the Kansas City or Boston airspace during the
time sampled. The squared Euclidean distance between
vectors of controller summary estimates was computed
to create a matrix of distances representing controllers’

perceptions of each aircraft’s capabilities relative to other
aircraft in the sample. For example, if summary estimates
for the first and second aircraft were:

| Speed Climb  Descent
Aircraft 1 1 2 3
Aircraft 2 4 5 6

The squared Euclidean distance for these aircraft
would be: (1-4)> + (2-5)” + (3-6) > = 27. A table listing
summary controller estimates used to compute the matrix
of distances is provided in Appendix A. For information
about participants’ professional experience, detailed de-
scriptions of the materials used to collect estimates, and
other points of methodology, see Pfleiderer (2000).

SAR Data Matrix. The information used to construct
this matrix was recorded at the Kansas City and Boston
centers. The Kansas City sample consisted of 168 hours
of continuous SAR data recorded from January 19, 1999
through January 25,1999. The Boston sample comprised
a total of 27 hours of SAR data, recorded on March 16,
1998 from 14:00 to 20:59 ZULU (7 hours); March 17,
1998, from 14:00 to 20:59 ZULU (7 hours); March 19,
1998 from 15:00 to 19:59 ZULU (5 hours); and March
20, 1998, from 15:00 to 22:59 ZULU (8 hours). Raw
data were extracted through the use of “log” and “track”
reports produced by the Data Analysis Reduction Tool
(DART). Within the sample time frame, 7095 flights
corresponded to the selected aircraft types. The modal
flightduration of these flights was 27 minutes. The modal
number of updates (observations) per flight was 283.

Aircraft type was derived from designators (alpha-
numeric labels that indicate the make and model of an
aircraft) thatare printed on the flight progress strip (FPS)
and appear within the flight plan readout display. The
contents of both flight progress strips and flight plan
readouts are recorded by the Host system and output in
the DART log report.

Mean climb and descent rate estimates were calculated
from altitude information recorded in the DART track
reports. Climb and descent rate estimates represent the
amount of change divided by duration of change for all
detected altitude changes converted into feet per minute
(fpm) and then averaged across changes for each aircraft
(set to missing if no altitude changes were detected).
For example, from 8:12:08 to 8:17:02 flight XMPLO1
climbed from 26,400 feet to 33,000 feet—a total of 6,600
feet in 4 minutes and 54 seconds (1,454 fpm). From 8:
30:00 to 8:35:00, XMPLO1 climbed from 33,000 feet
to 35,000 feet — a total of 2,000 feet in 5 minutes (400
fpm). The climb rate estimate for XMPLO1 would then
be 927 fpm (the mean of the two changes.) Mean climb
and descent rate estimates were calculated in this



manner for each flight and then averaged across flights
for each designator. Of course, notall flights made altitude
changes during the time sampled, and so the number of
observations used to calculate mean climb and descent
rates varied between aircraft designators. Appendix A lists
the number of climb and descent rate observations upon
which mean climb and descent rates were based.

Mean speed estimates were calculated by first comput-
ing the mean of all ground speeds recorded in the DART
track report for each flight (distinguished by a unique
Aircraft Identifier [AID] Computer Identifier [CID]
combination) and then averaging across flights for each
designator. The number of updates per flight varied as a
function of control time. However, the number of speed
estimates used to compute the average speed for each des-
ignator is equal to the number of aircraft corresponding
to that designator (column N in the table in Appendix
A). Please note that, unlike the computation of mean
climb and descent rates, mean speed calculations did not
involve speed changes. The measure simply represents the
average speed for each aircraft type based on the average
ground speed for all individual aircraft of that type.

Squared Euclidean distances were calculated from mean
speed, climb, and descent rates in the same manner as
controller observations. Distances in the resulting matrix
represented each aircraft’s performance relative to other
aircraft in the sample.

Variables for Interpretation of CMDS Models. A separate
set of variables was collected for the purpose of interpret-
ing the dimensions of the CMDS models. The engine
number, engine type, and weight class of each aircraft
was obtained from information provided in Appendix
A of 7110.65N, the most recent version of Air Traffic
Control (FAA, 2002).

Custom Software. As mentioned previously, the SAR
data matrix was computed from DART log and track
information for the 7,095 flights with aircraft designa-
tors corresponding to the selected aircraft types. These
data were extracted from a considerably larger sample of
flights. Consequently, it was impractical to manipulate the
raw log and track text reports manually. Therefore, two
Visual Basic programs were used to extract and organize
information and to compute the summary measures. The
National Airspace System (NAS) Data Management Sys-
tem (NDMS) program transforms the information in
log and track reports into organized database files that
provide efficient storage and access (for a more detailed
description of this program and its output, see Mills,
Pfleiderer, & Manning, 2002). A second program, Aircraft
Mix — Phase I, was specially designed to derive pertinent
information (i.e., aircraft type, speed, altitude) for each

flight from NDMS output tables, compute summary
measures, and print this information to SPSS database
files for analysis.

Results and Discussion

Controller estimates of speed, climb, and descent rates
were compared with mean speed, climb, and descent rates
computed from SAR data using Pearson’s product moment
correlation coefficient. All associations were statistically
significant at the p < .01 level. However, the magnitude
of the correlation between SAR and ATC speed estimates
was slightly higher than the others with an = .94. The
comparison of mean ATC climb rate estimates and mean
climb rates calculated from SAR data produced an r =
.89, whereas the association between ATC descent rate
estimates and SAR descent rate measures resulted in an

r=.79.

Classical Multidimensional Scaling Analyses (CMDS)

Dimensionality. SAR data and ATC estimate matrices
were submitted to separate, non-metric CMDS analyses.
The squared correlation is a measure of fit that describes
the relationship between the original distances and the
derived stimulus coordinates. Squared correlations of the
two-dimensional (= .9990) and three-dimensional (#* =
.9989) models of SAR data, and of the two-dimensional
(7 =.9995) and three-dimensional (7 =.9996) models of
ATC estimates suggest that the proximities were described
well in either two or three dimensions.

Kruskal’s stress formula 1 is a measures of how well the
configuration represents the original data. This measure
ranges from zero (best fit) to one (worst fit). Stress values
for the two-dimensional (.0164) and three-dimensional
(.0171) models of SAR data, and of the two-dimensional
(.0123) and three-dimensional (.0116) models of ATC
estimates indicated that the configuration fit the data well
in either two or three dimensions. However, because stress
is not a reliable measure in a degenerate solution, scatter-
plots describing the relationship between proximities and
derived distances (i.e., scatterplot of non-linear fit) and
disparities (i.e., transformation scatterplot) were examined
for both analyses. None of the scatterplots demonstrated
patterns characteristic of a degenerate solution. (For an
explanation of the causes and caveats of degenerate solu-
tions, see Kruskal & Wish, 1978, p. 29-30.)

Inboth analyses, the two- and three-dimensional solu-
tions demonstrated excellent fit. Though the three-dimen-
sional solution demonstrated the best fit for the model
of ATC estimates, examination of stimulus coordinates
and regression analysis failed to uncover any distinctive,



interpretable features of the third dimension. Additional
dimensions are of little use if they fail to contribute to the
interpretation of the solution (Kruskal & Wish, 1978).
Moreover, the two-dimensional model demonstrated the
best fit for the SAR data set. Therefore, the two-dimen-
sional solution was selected for interpretation.
Regression Method of Dimensional Interpretation. The
most objective technique available for dimensional in-
terpretation is the regression method in which variables
believed to correspond with the stimulus configuration
are regressed over coordinates. For thisapplication, engine
type was coded according to performance capabilities
associated with each engine type, from lowest (piston-
driven) to highest (jet propelled). Weight class was also
coded into three ordered levels: Small aircraft are those of
41,000 Ibs. or less maximum certificated takeoff weight;
Large aircraft are those of more than 41,000 Ibs. up to
255,000 Ibs. maximum certificated takeoff weight; Heavy
aircraft are those capable of takeoff weights of more than
255,000 Ibs. whether or not they are operating at this
weight during a particular phase of flight (FAA, 2002).

According to Kruskal and Wish (1978), two condi-
tions are necessary for satisfactory multiple regression
interpretation of a dimension. First, the multiple correla-
tions must be extremely high (correlations in the .90s are
recommended, although those in the .70s will suffice).
As shown in Tables 1 and 2, only engine type and weight
class achieved the recommended degree of association
with the dimensions. In general, the two data sets were
remarkably similar: Correlations were in the .90’s for
engine type and in the .80’ for weight class. However,
the two models differed with respect to the relationship
between the dimensions and these criterion variables.
Notice that in the model of SAR data, the standardized
regression weights of both engine type and weight class
are more closely associated with Dimension 1 than with
Dimension 2. However, in the configuration derived from
ATC estimates, the standardized regression weights of
engine type were more closely associated with Dimen-
sion 1, whereas weight class was more closely associated
with Dimension 2.

Table 1. Summary of Multiple Regression Analysis Interpretation of the Characteristics of the

Two-Dimensional CMDS Model of SAR Data

Criterion R R? F p B, B,
Engine Type .94 .89 85.92 .00 .87* -.25%
Weight Class .80 .65 19.80 .00 .62* -.44*
Engine Number 31 .09 1.65 .22 .20 -.28
* p<.01

B4 Standardized Regression Weights Dimension 1
B2 Standardized Regression Weights Dimension 2

Table 2. Summary of Multiple Regression Analysis Interpretation of the Characteristics of the
Two-Dimensional CMDS Model of Controller Estimates

Criterion R R? F p B, B,
Engine Type .94 .88 80.34 .00 .80* -.48*
Weight Class .86 74 29.16 .00 48* -.70*
Engine Number 43 .18 2.37 12 .08 42
* p<.01

B4 Standardized Regression Weights Dimension 1
B2 Standardized Regression Weights Dimension 2



Neighborhood Interpretation of the CMDS Configura-
tions. Neighborhood interpretation focuses on identify-
ing discrete clusters of elements in the CMDS stimulus
configuration. Because neighborhood interpretation
capitalizes on small distances, this method can some-
times reveal patterns in the data that are not discernable
using multiple regression, which attends mostly to large
distances. In this particular application, neighborhood
interpretation was considered to be an important supple-
ment to dimensional interpretation because it was highly
possible that characteristics of the configuration might
correspond with categorical variables unsuitable for
multiple regression.

In general, the configurations (Figures 1 and 2) were
similar. In both models, Group A consisted primarily
of piston-driven aircraft. The exception to this was the
C208 (Cessna Caravan), a turboprop that did not per-
form like other turboprops. (As a point of interest, most
of the controllers in the sample misclassified the C208 as
a piston-driven aircraft.) Group B consisted entirely of
turboprops. In both configurations, all aircraft positioned
to the right of the dashed gray line are jets. However, the
number of groups differed between the configurations.
In the model of ATC estimates, high-performance jets
are clearly distinguished from other jet aircraft (Group
D in Figure 2). In the SAR data model, jets formed a
single, loosely-knit group.

Perhaps the most striking difference between the
configurations had to do with weight class. Most of the
aircraft types in the top portion of the stimulus configu-
ration of ATC estimates (Figure 2) are of the Small and
Large weight classes: Heavy aircraft are positioned in the
bottom portion of the configuration. This reflects the as-
sociation of weight class with Dimension 2 in the model
of ATC estimates. In the stimulus configuration of SAR
data (Figurel), Heavy aircraft are scattered throughout
the cluster of jets (Group C).

Conclusions

The clusters of aircraft identified in the neighborhood
interpretation of the stimulus configurations present the
simplest means by which to code aircraft types for the
aircraft mix variable. For the most part, these groups
were defined by engine type. Though high-performance
jets were not clearly distinguished from other jets in the
configuration of SAR data, it seems reasonable to classify
these aircraft separately in the computation of the aircraft
mixindex. On theaverage, the controllerswho contributed
estimates for the ATC sample had approximately 10 years
of experience at their current ARTCCs. The SAR sample
represented 195 hours of traffic. Given the concordance
of the two matrices in other respects, it is possible that
high-performance jets might have emerged as a separate
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Figure 1. Derived Stimulus Configuration of the Two-Dimensional Classical
Multidimensional Scaling (CMDS) Model of SAR Data
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Figure 2. Derived Stimulus Configuration of the Two-Dimensional Classical
Multidimensional Scaling (CMDS) Model of ATC Estimates

group in the SAR configuration had the sample been large
enough to better approximate the years of experience
represented by the controllers in the ATC sample.

It is unlikely that the incorporation of weight class
is crucial to the precision of the aircraft mix index. To
begin with, weight class is a correlate of engine type (i.e.,
most piston-driven aircraft are Small, most turboprops
are Large, all Heavy aircraft are jets). Because of the
nature of this relationship, incorporation of the weight
class dimension would only involve jet aircraft (i.e.,
separating jets into Heavy/other subgroups). However,
the tight clustering of the jet aircraft in Group C of the
stimulus configuration of ATC estimates (Figure 2) sug-
gests that this differentiation is probably not necessary.
Heavy aircraft may perform somewhat differently than
other jet aircraft, but this difference appears to be only
slightly perceptible to air traffic controllers (other than
procedural considerations addressing the wake turbulence
associated with Heavy aircraft and B757s).

Phase II: Development and Testing of the
Aircraft Mix Index

Method
Sample
The sample selected for testing the aircraft mix index
consisted of SAR data from 15 high-altitude sectors and

13 low-altitude sectors within the Kansas City airspace.
The Kansas City ARTCC was selected because of the

availability of sector information for that particular center
(e.g., sector strata, number of underlying airports, sector
combinations). The data were recorded on Friday, De-
cember 22, 1999 from 15:15 to 16:15 (local time) when
most sectors within the Kansas City en route center were
open (i.e., sector combinations were minimal).

Procedure

Given the fact that a total of 562 aircraft crossed the
Kansas City airspace during the hour sampled, it would
be highly impractical to calculate the aircraft mix index
manually. Therefore, a Visual Basic program (Aircraft
Mix — Phase II) was written to accomplish this task. This
program was designed to process SAR information stored
in NDMS output tables on a sector-by-sector basis. Based
on Phase I results, aircraft were assigned aircraft type codes
with values ranging from one to four. Piston-driven aircraft
were assigned a value of 1, turboprops a value of 2. With
some exceptions, jet aircraft were assigned a value of 3.
High-performance jets (i.e., aircraft types that perform
within similar parameters as the aircraft in Group D of
Figure 2) are coded as such in the system files of all en
route Host computers. These file codes were used to assign
a value of 4 to all high-performance jets in the sample.
Program algorithms were written to produce a half matrix
ofaircraft type differences between pairs of aircraft within
a given sector. Table 3 lists aircraft type differences for the
sample of aircraft in Figure 3. For instance, DAL589 is a
commercial jetand has been assigned an aircraft mix code



¥ Table 3. Aircraft Mix Index
DAL589 (3)
o | DAL589 AAL123 N149RJ UAL556 BLADE76
” ::;23 @ AAL123 0
%,  BLADET6 (4) N149RJ 1 1
UALS36 (3) o UAL556 0 0 1
Nas6CP (1) BLADE76 1 1 2 1

N456CP 2 2 1 1 3

Figure 3. Sample Sector Index = 17 4 4 4 2 3

with Aircraft Mix Codes

Table 4. Descriptive Statistics for Aircraft Mix Index (by Sector Strata)

Interval 1 Interval 2 Interval 3 Interval 4
(15:15:00-15:29:59) (15:30:00-15:44:59) (15:45:00-15:59:59) | (16:00:00-16:14:59)

High Altitude (N=15)
Mean 1.64 77 1.28 1.16
S.D. 2.59 1.68 2.29 1.88
Median .53 .00 .00 .00
Mode .00 .00 .00 .00
Minimum .00 .00 .00 .00
Maximum 8.85 5.37 7.63 5.63
Sum 24.58 11.52 19.23 17.36

Low Altitude (N = 13)

Mean 12.35 9.04 8.38 8.95
S.D. 11.90 9.93 6.52 5.53
Median 8.34 4.85 5.48 8.50
Mode 1.50 2.17 3.00 1.11
Minimum 1.50 2.17 3.00 1.11
Maximum 38.93 35.09 24.42 19.70
Sum 160.60 117.46 108.89 116.33

of 3. N149R] is a turboprop with an aircraft mix code
of 2. The aircraft mix difference between N149R] and
DAL589 is 1. The final step in the computation of the
index involved summing all items in the half matrix. For
example, the aircraft mix index for the group of aircraftin
Figure 3 is 17.00 (see Table 3). For each minute of data,
the aircraft mix index was calculated for all aircraft pairs
at approximately 12-second intervals and stored in an
array. At the end of each minute, the mean and standard
deviation of the aircraft mix measure were calculated and
sent to an array for the purpose of calculating the mean
and standard deviation of the aircraft mix measure for
each 15-minute interval processed.

Results and Discussion

Computing aircraft mix at 15-minute intervals for
high- and low-altitude sectors clearly did not produce
a normal distribution (evidenced by the discrepancies
between the means and medians of the distributions
described in Table 4). For that reason, the Mann-Whit-
ney U statistic (Mann & Whitney, 1947) was employed
to examine whether the aircraft mix index was reliably
different in high- versus low-altitude sectors. The Mann-
Whitney U is a distribution-free statistic that tests the
null hypothesis that two sets of observations were sampled
from identical populations. The minimal assumption of
the Mann-Whitney Uis the independence of observations



Table 5. Mann-Whitney U Tests for Aircraft Mix Index (by Interval)

N Mean Rank Sum of Ranks U

Interval 1

High Altitude 15 9.27 139.00 19 00*

Low Altitude 13 20.54 267.00 )
Interval 2

High Altitude 15 9.00 135.00 15.00*

Low Altitude 13 20.85 271.00 )
Interval 3

High Altitude 15 9.13 137.00 17.00*

Low Altitude 13 20.69 269.00 )
Interval 4

High Altitude 15 8.87 133.00 13.00*

Low Altitude 13 21.00 273.00 ’

* Asymptotic significance (2-tailed) <.01

(Marascuilo & McSweeney, 1977). Given the fact that
aircraft cannot be controlled by more than one sector at
any given time, it logically follows that aircraft in one
sector were independent of aircraft in another within
each of the 15-minute intervals.

As shown in Table 5, the null hypothesis was rejected
forall comparisons, indicating that the distributions of the
aircraft mix index were reliably different in high- versus
low-altitude sectors. The sum of ranks assigned to each
of the original values for high- and low-altitude sector
groups is consistent with the expectation that the mix
of aircraft with different performance characteristics
(ergo the aircraft mix index) would be higher in low-
altitude airspace.

Conclusions

Because the aircraft mix index was able to reliably
detect distribution differences in high-and low-altitude
sectors, the measure warrants further investigation. Plans
for future tests include conducting a CMDS analysis of
a much larger sample of aircraft types to include heli-
copters and other rotorcraft to determine whether they
fit into one of the existing aircraft categories or require
the introduction of a separate code. Then, the aircraft
mix index will be introduced into the current set of Per-
formance and Objective Workload Evaluation Research
(POWER) variables (Mills, Pfleiderer, & Manning, 2002)
to determine whether or not the aircraft mix index adds
unique information to that set. Each step in this process
brings us closer to determining the relative contribu-
tion of aircraft mix to sector complexity. Constructing

the elements that create sector complexity may help us
understand the nature of controller workload, and thus
provide insight into the relationship between controller
workload and performance.
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Appendix A

Summary Estimates/Measures and Number of Observations

Controller Estimates

SAR Measures

Designator Engine | Engine | Weight _ _

Number| Type | Class Speed Climb Descent| Speed Climb Descent
(kts) (fpm) (fom) (kts) (fpm) (fpm)

A300 2 J H [N 21 19 19 26 8 19
Mean 477 2724 2671 364 1730 1380
SD 34 820 782 79 429 398
A310 2 J H [N 22 20 20 89 51 67
Mean 466 2458 2653 431 1932 1831
SD 441 786 869 58 667 509
A320 2 J L N 23 22 22 614 375 495
Mean 478 2705 2673 448 1019 1187
SD 32 706 851 62 531 476
AC50 2 P S [N 23 19 18 151 109 148
Mean 196 1247 1419 163 856 599
SD 79 525 550 15 1090 141
B52 8 J H [N 23 22 22 36 20 34
Mean 476 2386 2498 396 1484 1465
SD 48 816 799 47 898 694
B757 2 J L N 23 22 22 158 105 84
Mean 479 3043 3043 396 1768 1638
SD 30 1016 1271 64 575 448
B767 2 J H [N 23 22 22 501 227 337
Mean 488 2898 2923 440 1208 1516
SD 40 770 1068 65 530 487
BE36 1 P S [N 22 22 22 91 54 80
Mean 159 1111 1291 165 665 554
SD 25 457 665 19 250 153
BE58 2 P S [N 23 23 23 240 141 230
Mean 183 1250 1452 185 701 609
SD 27 442 683 22 211 187
C141 4 J H [N 22 21 21 19 8 14
Mean 399 2317 2202 415 1361 1446
SD 127 889 720 76 632 466
C208 1 T S [N 23 21 20 96 69 90
Mean 176 1036 1150 161 743 620
SD 40 289 410 18 214 188
C560 2 J S [N 22 20 20 345 212 248
Mean 391 2343 2478 356 1684 1658
SD 93 1025 1176 60 837 431
C650 2 J S [N 23 22 22 234 160 166
Mean 472 3223 3302 382 1535 1645
SD 48 1227 1242 68 610 438
D328 2 T S [N 15 13 13 29 17 19
Mean 275 1873 1888 304 1246 1357
SD 66 814 818 33 254 226
E120 2 T S [N 22 21 21 95 53 68
Mean 264 1617 1676 264 1243 1091
SD 60 747 552 22 263 261

* J=Jet; T = Turboprop; P = Piston

**H = Heavy; L = Large; S = Small

Al




Summary Estimates/Measures and Number of Observations (Continued)

Controller Estimates

SAR Measures

Designator Engine | Engine | Weight _ h

Number| Type | Class Speed Climb Descent| Speed Climb Descent
(kts) (fpm) (fpm) (kts) (fpm) (fpm)

F16 1 J L N 23 19 19 87 68 79
Mean 585 5379 5316 385 2930 1877
SD 203 2381 2631 84 3752 645
JSTB 2 T S N 21 17 18 117 77 81
Mean 289 2082 2019 254 1218 1089
SD 76 969 740 35 339 259
L101 3 J H N 23 23 23 103 62 87
Mean 497 2439 2513 461 917 1271
SD 32 718 652 66 380 498
LJ55 2 J S N 24 20 20 74 41 61
Mean 463 3303 3498 403 1601 1695
SD 48 1122 1272 58 652 486
MD11 3 J H N 22 21 21 66 31 62
Mean 484 2567 2607 476 1416 1463
SD 42 643 718 56 537 568
MD80 2 J L N 23 22 22 3279 1834 2454
Mean 454 2259 2475 406 1538 1479
SD 28 615 806 58 1626 376
PA46 1 P S N 21 21 20 39 24 35
Mean 199 1314 1485 188 749 691
SD 37 517 727 42 180 235
SF34 2 T L N 22 20 19 483 344 394
Mean 249 1760 1884 241 1087 978
SD 26 548 787 26 341 237
T38 2 J S N 24 21 21 123 97 120
Mean 488 5121 5310 388 2380 1721
SD 79 2365 2591 66 3435 731

* J=Jet; T = Turboprop; P = Piston

**H = Heavy; L = Large; S = Small




