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Relationship of sectoR activity and sectoR complexity 
to aiR tRaffic contRolleR taskload

Introduction

The purpose of this paper is to compare the relative 
effectiveness of measures of two constructs, sector activity 
and sector complexity, in predicting air traffic controller 
taskload. In spite of research that suggests that the number 
of aircraft alone is insufficient to describe a controller’s 
workload, we argue that it is a good predictor of con-
troller taskload. In fact, we believe that the number of 
aircraft is as good, if not better, a predictor of controller 
taskload than are a set of measures of sector complexity 
developed to predict when sectors will become too dif-
ficult for one controller to work. It is useful to be able 
to predict controller taskload because certain measures, 
such as FAA’s staffing standards (used to determine the 
number of controllers allowed to be on staff at a facil-
ity), are based on observations of the number and time a 
controller spends performing ATC-related tasks. If those 
observations can be replaced by more efficient or objective 
measurements of controller taskload, then the staffing 
standards could be updated more frequently.

Before addressing this issue, it is first necessary to de-
fine terminology. In this study, the criterion is air traffic 
controller taskload, defined here as controller activity, 
and measured by counting the number of data entries 
made during a traffic sample. The predictors in this study 
are sector activity, defined as the activity associated with 
aircraft moving through the sector, and measured by 
counting the number of aircraft under the control of the 
sector during a traffic sample. Sector complexity is a more 
difficult construct to measure than is sector activity. Sector 
complexity (also known as “air traffic complexity,” “cogni-
tive complexity,” and sometimes “dynamic density”) is a 
term used to describe a set of factors presumed to affect 
the difficulty experienced by a controller when control-
ling traffic. The sector complexity construct is proposed 
to describe the important factors associated with a sector 
(besides simply the presence of aircraft) that can make 
the job of controlling aircraft more difficult. Complex-
ity factors, as defined by different authors, often include 
such variables as the presence of climbing or descending 
aircraft, aircraft mix (different types of aircraft having 
different performance characteristics), special use airspace 
activity, and presence of severe weather. 

Several researchers (Mogford, Murphy, & Gutman, 
1994; Wyndemere, 1996; Laudeman, Shelden, Brans-
trom, & Brasil, 1998; Sridhar, Sheth, & Grabbe, 1998; 
Christien & Benkouar, 2003; Histon, Aigoin, Dela-
haye, Hansman, & Puechmorel, 2001; and Majumdar 
& Ochieng, 2000) have proposed different ways to 
measure sector complexity. Hilburn (2004) listed a set 
of 108 complexity factors comprising categories that 
encompassed most of the complexity factors identified 
in the literature. Most of these measures describe fac-
tors such as the variability among the aircraft in a sector 
(e.g., number of aircraft, percent of climbing/descend-
ing aircraft, aircraft mix, presence of military aircraft) 
variability among the physical characteristics of a sector 
(e.g., size; shape; number, direction, and intersection of 
flight paths and levels; number of shelves; and presence 
and activity of special use airspace), types of procedures 
used (e.g., required procedures, amount of coordination 
required, number of facilities with which interactions 
occur, complex routings, sequencing, and spacing), spe-
cific traffic circumstances (e.g., number and distance of 
conflicts, distance between aircraft) the extent to which 
operations are affected by winds and severe weather, and 
adequacy of radio or radar coverage.

For this study, sector complexity was defined two 
ways. The first measure of complexity was a subjective 
rating made by supervisors and controllers to describe 
the complexity associated with specific traffic samples 
(derived from data collected by Kopardekar & Magyrits, 
2003). The second was a composite variable that included 
measures reflecting several of the complexity variables 
found in the literature. The measures that were combined 
to form the composite complexity variable were: visual 
clustering (2-dimensional distances between aircraft), 
special use airspace (SUA) activity, presence of severe 
weather, frequency congestion, amount of coordination 
required, percentage of climbing/descending aircraft, 
and aircraft mix.

The purpose of this study was to compare the ef-
fectiveness of the sector activity and sector complexity 
constructs to see which was a better predictor of control-
ler taskload. An argument is often made that controller 
taskload is influenced by variables other than the number 
of aircraft in the sector. For example, Laudeman et al. 
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(1998) found that, while the number of aircraft alone 
accounted for 33% of the variance in controller activity 
(r= .57), the prediction (r2) was increased to 55% (r=.74) 
when using their Dynamic Density factors. However, 
other research has found a strong relationship between 
the number of aircraft and taskload measures. Man-
ning, Mills, Fox, Pfleiderer, and Mogilka (2001) and 
Manning, Mills, Fox, Pfleiderer, and Mogilka, (2002) 
found that the number of aircraft in a sector during a 
traffic sample loaded on the same principal component 
as several measures of controller activity, while variables 
related to sector complexity were more closely related to 
a different orthogonal component. These results suggest 
that the number of aircraft may be a better predictor of 
taskload than complexity, at least when the variables are 
measured using routinely recorded ATC data. 

We anticipated that sector activity would be a better 
predictor of controller taskload than sector complex-
ity and that adding sector complexity to the regression 
equation would not contribute anything unique to the 
prediction of taskload over that contributed by sector 
activity alone. 

Method

Data 
The traffic samples came from a study conducted by 

Kopardekar and Magyrits (2003) to compare alternative 
dynamic density metrics. The data were extracted from 
ninety 6-minute traffic samples of routinely recorded 
System Analysis Recording (SAR) data collected from 
the Atlanta and Ft. Worth Air Route Traffic Control 
Centers, totaling 180 samples. Besides the SAR data, 
pilot-controller communications recorded during the 
same traffic samples were also analyzed. Sixteen traffic 
samples with missing communication files were excluded 
from the analysis, leaving 164 samples. 

In addition, real-time controller and supervisor ratings 
of complexity were made for the same traffic samples at 
2-minute intervals. The rating data were first averaged 
across raters, then the composite ratings for three 2-minute 
intervals were averaged together to provide one rating for 
each 6-minute interval. 

The SAR files were first processed using the FAA’s Data 
Analysis and Reduction Tool (DART; Federal Aviation 
Administration, 1993), which produced output files that 
were then processed using the NAS Data Management 
System (NDMS) and POWER (Mills, Pfleiderer, & 
Manning, 2002). The result was a set of more than 20 
variables describing controller and aircraft activity. The 
voice tapes containing pilot/controller communications 
for the same traffic samples were transcribed, numbers 

and timing of transmissions were recorded, and content 
of the transmissions was coded. 

Computation of variables 
Taskload. Taskload was estimated by measuring observ-

able controller activity. Controller activity is defined here 
as the number of data entries (number of commands, 
not individual keystrokes entered) made by a controller 
during the course of a traffic sample. Data entries are 
recorded at both the Radar (R) and Radar Associate (RA) 
positions at a sector, regardless of whether one or two 
controllers are physically present (because some entries 
can only be made at each position). The variable used 
in this study to describe controller activity was the sum 
of the R and RA data entries made at the sector during 
the traffic sample. 

Sector activity. Sector activity is related to the number 
of aircraft controlled by the R controller during the traffic 
sample. The number of aircraft might be characterized 
as either the total number of aircraft controlled or the 
maximum number of aircraft controlled at any one time 
during the traffic sample. We initially considered both 
the total number of aircraft and the maximum number of 
aircraft to represent sector activity. Analyses reported below 
suggested it was not necessary to include both variables in 
subsequent analyses, so we retained only the total number 
of aircraft controlled during a traffic sample. 

Sector complexity. Several studies have identified mea-
sures contributing to sector complexity. Most of these 
include characteristics associated with aircraft movement, 
such as the amount of climbing or descending aircraft 
and aircraft mix, or circumstances associated with specific 
traffic situations including military/special use airspace 
activity, presence of severe weather, amount of coordina-
tion required, or frequency congestion. 

In what way might these variables affect sector com-
plexity? In general, an increased amount of these factors 
would be expected to increase the difficulty of dealing 
with specific traffic situations, create distractions, or re-
duce a controller’s ability to be flexible when controlling 
aircraft. More specifically, when aircraft climb or descend, 
it may be difficult for controllers to estimate how long it 
will take them to reach or leave an altitude. It may also 
be difficult to project whether two aircraft will conflict 
laterally if one is simultaneously moving both laterally 
and vertically. 

Aircraft mix may contribute to complexity because 
controllers must take differences in aircraft performance 
characteristics into account when determining how to 
sequence a line of aircraft into an airport and when 
deciding which aircraft to climb or descend to ensure 
separation is maintained. SUA activity limits the airspace 
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available, thus limiting the possible choices of solutions to 
sequence aircraft or avoid conflicts. Similarly, the presence 
of severe weather can reduce available airspace, thereby 
constraining control options. Severe weather may also 
create new sector “choke points,” requiring controllers 
to watch for conflicts in unusual locations and use non-
typical routings for aircraft. 

The amount of coordination required can increase 
sector complexity because coordination requires control-
lers to focus on communication rather than scanning the 
aircraft in their sector or formulating plans to sequence 
aircraft or maintain separation. Frequency congestion is 
similarly distracting but is also a problem because it can 
reduce the ability of a controller to contact a pilot to issue 
a clearance required to avoid a conflict. 

Table 1 lists the complexity variables described above 
and provides a brief definition for each. Complexity 
Ratings were subjective judgments made by controllers 
and supervisors who watched the traffic samples using 
the SATORI re-creation tool (Rodgers & Duke, 1993). 
The ratings were made on a 7-point scale, were obtained 
every 2 minutes, and were averaged over time and across 
controllers. SUA Activity and Weather were based on 
observations made by controller and supervisor subject 
matter experts (SMEs) about whether special use airspace 
was active or severe weather was present during each 
traffic sample. Climbing and Descending Aircraft was the 
percentage of aircraft in the traffic sample found to be 
climbing or descending, rather than in level flight, as 
determined from their recorded flight profiles. 

Three variables were identified that could poten-
tially represent Coordination Required. These were 
the number of pointouts made by either the R or 
RA controller, the number of off-frequency messages 
made in each traffic sample, and the average amount 

of time required for off-frequency messages. Because 
the correlation between the number of off-frequency 
messages and the time required to make them was .95, 
only the number of pointouts and the time required for 
off-frequency messages were retained for analysis. 

Visual Clustering described the number of aircraft that 
came within x lateral miles of another aircraft, regard-
less of the amount of altitude separation. This measure 
was based on Stein’s (1985) measure of “local density.” 
The variable was termed Visual Clustering because high 
values of this variable would be associated with aircraft 
that appeared to cluster together when looking at the 
2-dimensional radar display even though they might be 
separated by altitude. In this study, the lateral separation 
value used was 10 nautical miles. 

Frequency Congestion was measured as the amount 
of time either the R controller or a pilot spoke on the 
radio and was obtained from the voice communication 
recordings. Communication time may also be considered 
a measure of taskload, but because Mogford et al. (1994) 
identified frequency congestion as a complexity factor, 
we used it in that manner for this study.

Aircraft Mix was a number indicating the difference 
in engine types between all aircraft in a sector (Pfleiderer, 
2003). The aircraft mix index was computed by first, as-
signing aircraft type codes with values ranging from one 
(for Piston-driven aircraft) to four (for high-performance 
jets) to all aircraft. Second, a half-matrix of aircraft type 
differences (the absolute value of the difference between 
the aircraft type codes for each aircraft pair) was com-
puted. Third, all values of the aircraft type differences 
in the half matrix were summed. The aircraft mix index 
was computed for all aircraft present during each radar 
update (approximately 12-second intervals) and averaged 
over each 6-minute traffic sample.

Table 1. Sector complexity measures. 
Name Description 
Complexity Ratings Subjective complexity ratings made by controllers and 

supervisors

SUA Controller assessment - was special use airspace 
active? 

Weather Controller assessment - was severe weather present? 

Climbing & Descending Aircraft % climbing, descending aircraft 

Coordination Required # pointouts made, time required for off-frequency 
messages 

Visual Clustering # aircraft within 10 nm  

Frequency Congestion Amount of transmission time 

Aircraft Mix Measure reflecting difference in engine types  
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Results

Descriptive statistics
Taskload. The number of R and RA controller data 

entries was the only criterion variable. An average of 34.2 
R and RA controller entries (SD = 11.7) were made per 
traffic sample (N=164). 

Sector activity. Table 2 shows descriptive statistics and 
correlations for the two variables proposed to represent 
sector activity, the total number of aircraft and the 
maximum number of aircraft controlled simultaneously. 
Both variables were computed for each of the 6-minute 
traffic samples analyzed. The variables had a statistically 
significant correlation of .89 and were, thus, considered 
nearly equivalent. For this reason, only the total number 
of aircraft controlled was retained for analysis.

Sector complexity. Table 3 shows descriptive statistics 
and correlations for the sector complexity variables. SUA 
activity and weather were both bivariate distributions (with 

values of 0=not present and 1=present.) For about 75% 
of the traffic samples, SUA activity was equal to 0. For 
about 60% of the traffic samples, presence of significant 
weather was equal to 0. Distributions of the number 
of pointouts, number of off-frequency transmissions, 
off-frequency transmission time, and aircraft mix were 
positively skewed. For about half the traffic samples, each 
of these variables had values equal to 0. 

Complexity ratings were significantly correlated with 
five of the eight complexity variables. Visual clustering 
was correlated with five of the other sector complexity 
variables. SUA activity and the proportion of climbing 
and descending aircraft were significantly correlated with 
four other variables. 

Regression analysis
To reduce the number of variables used for analysis, 

we often compute a Principal Components Analysis 
to identify a set of components that account for the 

Table 2. Descriptive statistics and correlations between sector activity variables (N=164).  
Name Average Std. Dev Correlations 

Total # aircraft 15.0 4.0  

Maximimum # aircraft controlled 
simultaneously 11.3 3.2 .89**

**Significant at p < .01.

Table 3. Descriptive statistics and correlations between sepctor complexity variables (N=164). 

Correlations
Name Avg SD CR SUA Wx %CD PO OFT VC FC
Complexity 

ratings
3.4 1.1

SUA 0.2 0.4 -.06
Weather 0.4 0.5 .24* -.21**

% of climbing 
& descending 
aircraft

0.5 0.2 -.26* -.28** -.04

Coordination 
required (POs)

1.4 1.9 .09 -.19* .23** -.01

Off freq message 
time

15.7 20.8 -.39** .02 .08 .07 .02

Visual clustering 6.2 3.0 .45 .17 -.05 -.06 -.03 -.24

Frequency 
congestion

216.1 55.7 .57** .08 .03 .41** .03 -.09 .41**

Aircraft mix 11.3 15.3 -.13 -.05 -.12 .23 -.05 .01 .23 .06

* p < .05.    ** p < .01.
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variability in a set of variables and use the component 
scores to predict the criterion measure. However, in this 
analysis, the sector complexity variables were assumed to 
be of equal weight, and a higher value of each variable 
was presumed to be associated with a higher amount of 
complexity. Consequently, z-scores were computed for 
all sector complexity variables (except the Complexity 
Rating) and were summed to compute a composite 
complexity measure for each traffic sample. We then used 
this composite complexity variable, called “Complexity 
Value,” in subsequent analyses. The Complexity Rat-
ing was not standardized, but was instead retained as a 
separate variable. 

Table 4 shows the correlations between the variables 
entered into the regression analysis, number of R and 
RA data entries, total number of aircraft, the Complexity 
Rating, and the Complexity Value. All zero-order correla-
tions were significant except the correlation between the 
Complexity Value and the total number of aircraft and 
the correlation between the Complexity Value and the 
number of R and RA data entries. The correlation between 
the Complexity Value and the Complexity Rating, while 
statistically significant, was lower than the correlations 
between the other variables. Notably, the zero-order cor-
relation between the number of aircraft and the average 
complexity ratings was very high (r = .66). 

A set of analyses was performed to assess the effective-
ness of alternative multiple regression models in predicting 
controller activity. We used a method that allowed us to 
compare specific regression models instead of an analysis 
such as stepwise linear regression because we wanted to 
assess the relative contribution of specific variables to 
the model rather than simply those variables that made 

statistically significant contributions, such as would result 
when conducting a multiple regression analysis. 

Table 5 shows the results of these analyses. Row 1 shows 
the multiple correlation of the full model containing all 
three predictor variables (Number of Aircraft, Complexity 
Rating, and Complexity Value) with the criterion variable 
(number of R and RA controller data entries). The multiple 
correlation of the full model with the number of R and 
RA controller data entries was R = .62, accounting for 
about 39% of the variance in controller activity. Succeed-
ing lines show multiple correlations between alternative 
(reduced) regression models containing fewer than the 
total number of predictors. 

The column containing F for the test of R2 change 
compares the relative effectiveness of a reduced model 
with the effectiveness of the full model in predicting 
the number of R and RA data entries. If the probability 
is greater than .05 that the change in R2 between the 
two models is significantly different from zero, then the 
reduced model is considered to be as effective as (i.e., 
no different than) the full model in predicting control-
ler activity. On the other hand, if the probability is less 
than or equal to .05 that the change in R2 between the 
two models is significantly different from zero, then 
the reduced model is not considered to be as effective 
as the full model in predicting controller activity. The 
goal of the analysis is to identify a reduced model that 
contains as few predictors as possible but accounts for a 
high enough percentage of the variance in the dependent 
variable to be considered equivalent to the full model. 
In this way, we will assess the relationship between 
each specific predictor and the criterion measure of 
controller taskload.

Table 4. Descriptive statistics and correlations between variables included in multiple regression model 
(N=164). 

Name Avg SD Correlations 

   # R&RA 
data entries N aircraft Complexity 

Rating
Complexity 

Value

R & RA data entries 41.1 13.7 1.0   

N aircraft 15.0 4.0 .53** 1.0  

Complexity Rating 3.45 1.11 .58** .66** 1.0 

Complexity Value 0.0 3.0 .01 .11 .17* 1.0

* p < .05.         ** p < .01.  
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The analysis of six reduced models is shown in Table 
5 (see rows 2-7). The first group of analyses (rows 2-4) 
compared three reduced models consisting of individual 
predictor variables with the full model. The second group 
of analyses (rows 5-7) compared three different reduced 
models consisting of pairs of the different predictor vari-
ables with the full model. 

As an example, Row 2 compared a reduced model con-
taining only the number of aircraft as a predictor with the 
full model. The model containing the number of aircraft 
had an R2 of .29, compared with the full model’s R2 of 
.39. The F computed to assess the R2 change of .10 had 
a value of 13.46. The probability was less than .001 that 
the change in R2 was greater than zero. The reduced model 
containing only the number of aircraft was significantly 
different than the full model in predicting controller activ-
ity and, thus, was not as effective as the full model. 

The only model that predicted controller activity as 
well as the full model is shown on Row 5. The reduced 
model, containing both the number of aircraft and the 
Complexity Rating, had an R2 of .62, the same as the 
full model. The F computed to compare the R2 change 
of .01 (which was greater than 0 due to rounding) had a 
value of 1.95, and the probability was less than .17 that 
the change in R2 was greater than 0. Thus, the reduced 
model containing both the number of aircraft and the 
Complexity Rating predicted the number of R and RA 
data entries as well as the full model.

The model containing only the Complexity Value 
contributed virtually nothing to the prediction of R and 
RA controller data entries. Furthermore, when the vari-
able was entered into a model with either of the other 
predictors, it also added nothing to the prediction of the 
criterion measure. Note that while both the number of 
aircraft and the Complexity Rating had significant zero-
order correlations with the criterion measure, neither, in 
isolation, was sufficient to predict the criterion as well 
as the full model. 

Principal Components Analysis
A Principal Components Analysis was conducted using 

the four variables to assess their interrelationships. Based 
on previous research (Manning et al., 2002; Pfleiderer, 
2005), we expected that the total number of aircraft and 
the number of data entries would load on a single Activity 
component. We also expected that, because they purport-
edly measured the same construct, the two complexity 
variables would load on a second Complexity component, 
which should be different from Activity. 

Two components were extracted. Table 6 shows the 
factor loadings, rotated with the Varimax rotation method. 
The first component extracted had an eigenvalue of 2.21 
(accounting for 55 % of the variance in the data), while 
the second had an eigenvalue of 1.00 (accounting for 
25% of the variance in the data). 

Table 5. Results of analyses comparing alternative multiple regression models prediction of controller 
activity.  

Regression model R R2 R2

change
F for test 

of R2

change

df p 

1. Full model containing number of 
aircraft, Complexity Rating, and 
Complexity Value 

0.62 0.39 N/A N/A   

Individual predictors       
2. Model containing only number of 
aircraft

0.53 029 0.10 13.46 2, 160 .000 

3. Model containing only the 
Complexity Rating 

0.58 0.34 0.05 6.31 2, 160 .002 

4. Model containing only Complexity 
Value

0.01 0.00 0.39 50.72 2, 160 .000 

Predictor pairs       
5. Model containing n aircraft and 
Complexity Rating 

0.62 0.38 0.01* 1.95 1, 160 .165** 

6. Model containing N aircraft and 
Complexity Value 

0.54 0.29 0.10 26.37 1,160 .000 

7. Model containing Complexity 
Rating and Complexity Value 

0.59 0.35 0.04 10.78 1,160 .001 

* Difference in R2 was greater than 0 due to rounding.  
** Indicates reduced models that predicted controller data entries as well as the full model.  
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The results were only partly consistent with our 
expectations. As expected, Component 1 was clearly 
related to controller and sector activity. However, three 
variables instead of two--the Complexity Rating, R and 
RA data entries, and the Number of Aircraft--had high and 
equivalent correlations with this component. The second 
component was defined exclusively by the Complexity 
Value variable. The Complexity Value did not correlate 
significantly with the Activity component, nor did any of 
the other three variables correlate significantly with the 
Complexity component. 

Conclusions

The results appear to suggest that our hypothesis that 
sector activity would predict controller taskload better than 
sector complexity was incorrect. The regression analyses 
showed that only a model containing both the number 
of aircraft and the Complexity Rating was equivalent to a 
full model containing all three variables when predicting 
controller taskload.

However, when interpreting these results, the reader 
must consider what each of the variables measured. We 
found that the Complexity Rating (based on SMEs’ 
subjective judgments about the complexity of the traffic 
samples) predicted controller activity better than the 
number of aircraft alone, but the Complexity Value 
(based on a set of variables identified through previous 
research as contributing to sector complexity) did not 
contribute at all to that prediction. A subsequent Prin-
cipal Components Analysis revealed that the number 
of R and RA data entries, the number of aircraft, and 
Complexity Ratings loaded equally well on a component 
best described as Activity while the Complexity Value was 
the only variable that loaded on a separate component 
that we called Complexity. This result suggests that the 
Complexity Rating variable measured something very 
different than the Complexity Value. 

The Complexity Rating was measured on a 7-point 
Likert-type scale where 1 represented low complexity 
and 7 represented high complexity. The study for which 

these data were collected did not define these terms and 
did not collect SME feedback about how they interpreted 
complexity. Thus, it is not clear what the controllers were 
estimating when they provided the Complexity Ratings. 
Perhaps the Complexity Ratings were instead an estimate 
of the workload that observers believed the controller at 
the sector experienced. This interpretation is supported by 
the strong relationship between the Complexity Rating, 
data entries, and number of aircraft, and the correspond-
ing lack of a relationship between Complexity Rating and 
Complexity Value. Similar relationships were observed 
between data entries, number of aircraft, and a real-time 
subjective workload assessment (when measured using 
the Air Traffic Workload Input Technique during Man-
ning et al., 2002) when all variables loaded on a similar 
Activity component.

These results suggest that activity and workload are 
very similar. First, the controllers did not appear to rate 
Complexity because the PCA showed that their ratings 
loaded on an Activity component rather than a Complexity 
component. Second, the Complexity Value, as measured 
here, was not very closely related to either sector activity 
or controller taskload because it loaded on a completely 
different component than did those variables. 

Perhaps the complexity measures used here were not 
good measures of the construct. Even though the indi-
vidual measures used in this study were derived from 
factors identified by numerous researchers as contribut-
ing to sector complexity, certain distributional problems 
may have limited their effectiveness. Distributions of the 
individual variables included in the composite did not 
have much variability, which may have indicated that the 
traffic samples used were not very complex. The mean 
of the complexity ratings was 3.4, less than the halfway 
point on the 7-point Likert scale. Only 29% of the 
individual complexity ratings exceeded the mid-point. 
We often find that samples of real traffic are of relatively 
low workload (as seen in Manning et al., 2002). Perhaps 
complexity metrics should be tested in simulations (like 
those conducted by Lee, 2005) that increase traffic and 
other variables beyond normal levels to produce higher 

Table 6. Rotated component matrix.  
Variable name Components 
 Component 1: ‘Activity’ Component 2: ‘Complexity’ 
R & RA data entries .83  
N aircraft .85  
Complexity Rating .87  
Complexity Value  .99 

Note: Component loadings < .3 were eliminated.  
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values of complexity. Alternatively, these variables may be 
insufficient, and different variables should be developed 
to represent the complexity of traffic in the real world. 

The third part of this discussion deals with the relation-
ship between taskload, workload, and aircraft activity. 
If we assume that the complexity ratings in this study 
actually measured workload, it suggests that 1) activity 
and workload are very similar and yet 2) activity and 
workload are better predictors of taskload when paired 
together, even though both are fairly good predictors 
in isolation. 

Perhaps we should be asking: What are we trying to 
predict, and how should we measure it? One set of stud-
ies attempts to predict workload with the goal of deter-
mining whether new systems or procedures will unduly 
increase it. Another set of studies develops complexity 
measures for the purpose of predicting sector activity 
at some time in the near future (such as 20 minutes in 
advance), although the present study suggests that there 
is not much of a relationship between sector complexity 
variables and current sector activity. 

Studies that attempt to predict taskload do not occur 
often in the literature. However, taskload prediction could 
be useful for setting staffing standards that are used to 
determine how many controllers are needed to provide 
ATC services to individual facilities. Previous efforts to 
set staffing standards were based on time-and-motion 
studies, in which observers recorded how long it takes 
controllers to perform observable activities. Software such 
as POWER (Mills et al., 2002) would facilitate obtaining 
such measures through analysis of routinely recorded data, 
not requiring special observational studies (that might 
influence controller behavior) to be conducted. 

We proposed in this paper that the number of aircraft 
alone might be sufficient to predict controller activity/
taskload, but the results suggest that this is not accurate. 
However, perhaps measuring controller activity (e.g., 
counting data entries) and extracting measures from 
other routinely recorded data could provide sufficient 
information to develop more sophisticated, or at least 
more objective, staffing standards. 

It should be noted that workload was not explicitly 
measured in this study. While it appears that the SMEs 
did not rate sector complexity, we cannot be certain 
whether they rated workload instead. Consequently, it is 
not appropriate for us to make specific statements about 
how these results about the prediction of taskload may 
relate to the prediction of workload. Research on the 
relationship between those variables is still needed.
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