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Effects of Training School Type and Examiner Type on General Aviation Flight Safety

INTRODUCTION

In 2005, the U.S. National Transportation Safety Board 
(NTSB) released Safety Study NTSB/SS-05-01 Risk factors as-
sociated with weather-related general aviation accidents. This study 
included a number of recommendations, including A-05-027:

Develop a means to identify pilots whose overall performance 
history indicates that they are at future risk of accident involvement, 
and develop a program to reduce risk for those pilots.

This recommendation was largely addressed by the FAA. 
However, two questions remained concerning what effects general 
aviation (GA) pilots’ type of education and certification testing 
might have on their subsequent flight safety record. We attempt 
to address these questions in the current study.

METHODOLOGY

Research Hypothesis
Following standard procedure, we begin with the null 

hypotheses that pilots’
•	Type of education
•	Type of certification testing
have no significant effect on their subsequent flight safety 

record. We then design a research method to test available data 
to statistically confirm or disconfirm these hypotheses.

Basic Research Design
Operationalizing “flight safety record.” “Flight safety” can 

be measured in various ways. Li (1994) noted that aviation-risk 
studies usually examine some sort of quotient based on

Frequency of some event
Some estimate of risk exposure

For instance, this quotient may be accidents per year or 
accidents per 100,000 flight hours. In the current study, we 
operationalize “flight safety record” as “accidents per unit time,” 
with the “unit” defined as a time period spanning several years, 
to capture a greater number of events.1

Operationalizing type of education and type of certification 
testing. “Type of education” covers too broad a swath to be 
investigated fully, given the many types of pilot certificates. 
Therefore, based on the logic that the private pilot certificate is 
universal among the vast majority of pilots and may indeed be 
the only certificate a GA pilot ever gets, we first operationalize 
“education type” as whether a GA pilot received the private pilot 

1We fully realize that some readers will be disappointed and would prefer to see 
a study based on, say, accidents per flight hour, or per departure. Unfortunately, 
that kind of information is simply not readily available at this time.

certificate from a Part 612 versus a Part 141 school, as defined in 
Title 14 of the U.S. Code of Federal Regulations, Title 14, Part 
67 (§67.121.309(d)). This does exclude recreational and sport 
pilots, however; these constituted less than 1.5% of all new airman 
certificates issued during the time period studied (FAA, 2010). 
Further, it should be noted that it is possible for a student to 
have received initial private pilot training from both a part 61 
and a 141 pilot school, and that the pilot classification in this 
study would refer to the regulatory part the pilot was certificated 
under.3 It is reasonable to conclude that the regulatory part the 
pilot was certificated under made the final assessment as to the 
pilot’s proficiency and ability to pass the private pilot practical 
test. It is this final regulatory part that will be associated with the 
pilot’s education type. Operationally, we shall label this variable 
“School type” (abbreviated as “School”).

Similarly, we can operationalize “certification testing” as 
whether that pilot’s private certificate examiner was an Aviation 
Safety Inspector (ASI), personnel of a flight school that holds 
examining authority (BYSCHOOL, Part 141 only), or Desig-
nated Pilot Examiner (DPE). We label this variable “Examiner 
type” (abbreviated as “Examiner”).

The basic analytical design. The operational definitions just 
given suggest a basic structure for an analytical design, shown 
in Figure 1.

To calculate the statistical effects of School and Examiner 
on subsequent accidents, we essentially need to compare GA 
accident pilots against some standard or baseline. For instance, 
accident pilots can be compared to non-accident pilots.

2Technically, there are no “Part 61 schools. Rather, there are flight instructors, 
or collections of flight instructors, operating under the Part 61 authority of 
their individual certificates, instead of the formal authority granted to an actual 
flight school (as under Part 141). However, since it is colloquial and useful to 
call these “Part 61 schools,” we follow that convention here.
3As in the previous footnote, we acknowledge that all private pilots are 
technically certificated under Part 61 (even if they graduated from a Part 141 
school). But, since it is “the effect of school” we are after here, we again choose 
to speak colloquially. 

Figure 1. The basic 2x2x3 analytical design.
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In this type of design, each of the 12 cells in the 2x2x3 
“Accident x School x Examiner” matrix contains the number 
of individuals—the frequency count—in that set of conditions. 
The front “Accident matrix” contains the numbers of pilots who 
subsequently had an accident after receiving their private pilot 
certificate during the time period under examination, with pilots 
assigned to cells by the type of school they attended and the type 
of examiner that tested them. Similarly, the rear “Non-accident 
matrix” consists of a large national group of non-accident pilots 
parsed the same way, by rows and columns. We expect that the 
non-accident pilots will greatly outnumber the accident pilots. 
And, foremost in our minds will be determining the relation 
between School, Examiner, and subsequent pilot accidents.

The Data
Adding school and examiner type. Initially, FAA’s Office of 

Accident Investigation and Prevention (AVP-210) provided a 
list of all pilots involved in serious-injury or fatal GA accidents 
taken from NTSB’s database, encompassing a time period from 
Jan. 1, 2003 to Aug. 28, 2007 (4 yr, 8 mo, Npilots=7,342).4 “GA 
aircraft” were defined as “all N-tail-numbered aircraft operat-
ing under all Federal aviation regulations Parts except 121 and 
135, regardless of airframe type or weight.”5 Although varying 
distinctions between “general aviation” and “non-general avia-
tion” could be argued, defining general aviation in this manner 
is consistent with FAA precedent and provides a reasonable 
grouping for the purposes of our study. Those 7,342 cases were 
next given to FAA’s Office of Flight Safety (AFS-760), whose 
staff were able to match 2,090 of those accident pilots (28.5%) 
to the data mandated by our study, namely:

•	School Type Part 61 vs. Part 141 schools (with Part 
142 classified as 141).6

•	Examiner Type Aviation Safety Inspector (ASI) versus 
Tested By School Authority (Part 141 schools only) 
versus Designated Pilot Examiner (DPE).

This matching was done by cross-referencing listed NTSB 
pilot certification numbers and/or names to the FAA Compre-
hensive Airman Information System database (CAIS, pronounced 
“CASS”), which contains school and examiner information. The 
low match rate was due to a number of reasons: a) the NTSB 
pilot certificate field (labeled “crew_cert_id”) did not match the 
CAIS pilot certificate field, making retrieval of that pilot’s school 

4 NTSB only infrequently grants FAA a limited number of full copies of its 
database (having pilot names and certification numbers). Those were necessary 
to match each pilot with his/her specific flight school and examiner type. 
Therefore, we were limited to using the most-current NTSB database available, 
which ran to Aug, 2007.
5Our data contained no Part 129 pilots (foreign air carriers operating 
N-registered aircraft).
6The Part 142 (§142) training centers were nominally grouped with Part 
141 schools as both entity types provide instruction under approved training 
programs. In actuality, our data contained no Part 142 pilots listed as such.

and examiner data impossible,7 or because; b) CAIS contains 
school and examiner data only from 1995 on. Since many of 
our accident pilots had received their first certificate before that, 
their school and examiner data were therefore missing. This 
constraint had statistical ramifications, which will be discussed 
wherever appropriate.

Additional exclusions. Additional pilots had to be excluded 
for a variety of reasons. For instance, 12 foreign-national pilots 
were excluded because their CAIS data reflected dates when they 
first received a certificate in the U.S., so training received in their 
native country was unrecorded. Fourteen additional pilots were 
excluded because the date of their accident was listed as being 
prior to the date of their private pilot certification. This would 
be consistent with having an accident while still being a student 
(however, this was unknown; these could have been data-entry 
errors). More importantly, we were interested in how school and 
examiner type might subsequently affect accidents after gradu-
ation; therefore, students who had not yet earned their private 
pilot certificate were not a group of interest here.

Next, we attempted to exclude all persons other than 
pilots-in-command (PIC).8 NTSB data list all persons involved 
in an accident, regardless of whether they actually exerted any 
influence on how that accident unfolded. Since we were primarily 
interested in the person most likely to have been able to prevent 
each accident, we chose to focus on PICs, while excluding all 
others. Our parsing method was based on the logic that the 
PIC should be the senior pilot onboard, ultimately in control 
of the aircraft facing an impending accident,9 and therefore the 
person of interest when determining how school and examiner 
type might affect accidents.

In practice, identifying the PIC can be difficult. In non-
fatal accidents, on-scene investigators can interview the flight 
crew. But, if one can only look at a row of data from a database, 
the PIC may be ambiguous when multiple persons are onboard 
and/or when there are no survivors. In point of fact, the NTSB 
does identify a field in their database designated as PIC.10 How-
ever, in practice, that person is typically assumed to be the pilot 
identified at the controls.11 In cases such as flight instruction, 

7Older pilots used to have certificate numbers matching their 9-digit Social 
Security numbers. As of June 2002, that policy was changed for privacy reasons, 
and 7-digit certificate numbers began to be issued. CAIS contains whichever 
number each pilot prefers. However, this can result in mismatch with NTSB’s 
record for the same pilot.
8The NTSB data dictionary included with their database defines PIC as: 
“Pilot or pilot-in-command means the person who 1) has final authority and 
responsibility for the operation and safety of the flight, 2) has been designated 
as pilot-in-command before or during the flight, and 3) holds the appropriate 
category, class, and type rating, if appropriate, for the conduct of the flight. 
Title 14 CFR, 91.3 designates the pilot-in-command of an aircraft as being 
directly responsible for and the final authority as to the operation of that 
aircraft. In general, 14 CFR, 61 prescribes certification requirements to act as 
pilot-in-command of various flight operations.”
9Note that we are not implying that the PICs “caused” their accident—only 
that they were defined as PIC by the selection standards imposed here in order 
to conduct the present study.
10NTSB Table Flight_Crew, field crew_category, designator PLT.
11Personal communication, L. Groff, Ph.D., NTSB, January 19, 2011.
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a valid argument can be made that the flight instructor, being 
the most experienced pilot aboard, should be held “statistically 
accountable” for purposes such as ours.

In our accident data, the inclusion/exclusion process was 
simple for single-pilot accidents—all were included. However, 
the process was more involved for cases of multiple-pilot and 
multiple-aircraft accidents. The NTSB case numbers listed all 
pilots and aircraft in any given accident together under the 
same case number. So, we ultimately tried to determine which 
pilots were in which planes, and then assign a “status hierarchy” 
to each crewmember to determine who should be delegated as 
PIC in each aircraft.

Below is the initial crew status categorization12 assigned by 
us to the original 7,342 cases. These are roughly rank-ordered 
by “command status,” defined as “degree of command authority, 
given the type of flight”:

1.	 Flight Instructor................ n=613
2.	 Check Pilot............................. 33
3.	 Pilot................................... 6,281
4.	 Co-pilot................................ 149
5.	 Flight Engineer.......................... 2
6.	 Student.................................. 175
7.	 Other...................................... 45
8.	 Unknown (blank data cell)...... 44

In most cases, this hierarchy was sufficient to determine 
PIC and led to additional pilots being excluded as non-PICs. 
For instance, all co-pilots, flight engineers, students, “other,” 
and “unknown” were excluded.

A total of 115 residual cases resisted simple determination of 
PIC. We therefore manually checked those individual, associated 
NTSB accident reports themselves. While laborious, this method 
increased the chance that only PICs-as-defined were included 
in the final accident data file. The net result was an additional 
75 of the residual 115 pilots being excluded for not being PICs.

Determining pilot instrument rating and total flight hours at 
time of accident. While not part of the original FAA response to 
the NTSB, two additional factors of interest are pilot instrument 
rating and flight risk associated with total flight hours (TFH). 
The risk factors faced by instrument-rated (IR) pilots are arguably 
considerably different than those faced by non-instrument-rated 

12The actual NTSB data field is called crew_category.

(NIR) pilots. Likewise, we know that most GA accidents happen 
to relatively low-hour pilots (Craig, 2001). Moreover, it is always 
wise during statistical analysis to make some attempt to control 
for risk exposure; for instance, by considering TFH as a covariate.

Our original records from NTSB did not state whether 
each pilot was IR at the time of their accident. But, it seemed 
logical to examine instrument rating as a potential factor pos-
sibly distinguishing accident pilots from non-accident pilots. 
So, we first tried deriving it by comparing accident dates (from 
NTSB) to IR issuance dates (from CAIS). If the CAIS IR issu-
ance date preceded the accident date, the pilot was judged “IR 
at the time of accident.” 

However, it soon became evident that this method was 
flawed. To properly declare a given pilot “IR at the time of ac-
cident,” that pilot should not just hold any type of instrument 
rating, but rather the type of rating appropriate to the type of 
aircraft involved.13

We therefore requested the NTSB’s record of which pilots 
were IR at the time of accident. Generally, CAIS and NTSB 
records agreed, but not completely (94%). So, we decided to 
accept the NTSB record as the standard, since these involved an 
investigator present on-scene who also later obtained the pilots’ 
ratings from FAA records.14

Net result. After all the above mentioned exclusions, the net 
data-survival was 1,868 pilots identifiable as being PICs having 
school data, examiner data, plus IR data (25.4% of the original 
7,342). These cases spanned a final accident-data range of Jan 
1, 2003 to Aug 26, 2007 (a net time loss of just two days from 
the original date range).

Table 1 shows these 1,868 pilots grouped by School, 
Examiner, and Instrument Rating. Whole-group data are at 
left of the table; to the right, are data parsed by instrument 
rating. According to NTSB records, 1,036 pilots (55.5%) were 
non-instrument-rated (non-IR) at the time of the accident. 
This approximates the relative percentages found in the pilot 

13There are several types of airframe categories—airplane, helicopter, glider, 
gyrocopter, balloon, powered lift, and blimp (in descending order of frequency). 
A powered lift is a rare category of aircraft such as the Harrier jet or tilt-rotor 
Osprey. However, at the time for which we had data, the FAA granted instrument 
ratings only for airplanes, helicopters, and powered lifts.
14NTSB reportedly requests “Blue Ribbon Packages” from FAA—individual, 
comprehensive records for each airman involved in an accident. These contain 
all the airman’s instrument ratings, with dates of issuance (L. Groff, NTSB, 
personal communication).

Table 1. Accident data grouped by school, examiner, and instrument rating. 
Examiner  School  Examiner  Instrument-rated at 

time of accident? ASI BYSCH DPE Total ASI BYSCH DPE Total
  16       0 1,677  1,693 Part 61    6  0  974      980

No     6     78      91    175 Part 141      1     19   36        56 
   22       78   1,768  1,868 Total        7       19  1,010   1,036 

Whole group 
Part 61     10       0   703      713 

YesPart 141      5     59     55      119 
Total      15       59    758      832 
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population at large (59.1% IR).15 The remaining 832 pilots 
(44.5%) were instrument-rated (IR) in the category of aircraft 
being operated at the time of the accident.

The national “non-accident” group. As Figure 1 previously 
illustrated, the basic analysis called for comparing our accident 
data to a large national group of non-accident pilots to look for 
differences. To that end, AFS-760 also provided nationwide 
CAIS data for 302,685 pilots, as a “snapshot” and containing 
the same key information as our accident data—particularly, 
private pilot a) school, b) examiner, c) issuance date,16 and d) 
instrument rating.17 

We then sent the data to AAM-300 to add most-recent 
total flight hour (TFH) estimates reported during pilot medi-
cal certification. For equilibration purposes, TFH data were 
constrained to lie within the same time window as the accident 
data.18 After initial difficulty, we were told of a publically undocu-
mented “UniqueID” number shared by both FAA databases,19 
which enabled better matching between CAIS and DIWS. 

15Source: www.faa.gov/data_research/aviation_data_statistics/civil_airmen_
statistics/2007/media/07-air4.xls, averaged over years 1998-2007, defined as 
NIR pilots / (Nall pilots - Nstudent pilots).
16Table 2’s basis for determining instrument rating involved simply whether 
or not pilots possessed any instrument rating at the time we requested this 
sample. As such, it is a “snapshot” of the GA population.
17Foreign-certificated pilots were absent from this group, since they had no 
school or examiner-type data entered into CAIS.
18For U.S. non-accident pilots, the best available flight hour estimates currently 
come from the FAA’s Aerospace Medical Certification Division/Document 
Imaging Workflow System (AMCD/DIWS, AAM-300), transcribed from FAA 
Form 8500-8 gathered during pilot medical re-certification. For the private 
GA pilot, this involves Class-3 medical certification, recurring every 5 years 
for pilots under 40 years of age, and every 2 years thereafter.
19Neither CAIS nor DIWS has a publically available user’s manual.

However, after adding the constraint of first issuance date,20 us-
able data containing both first issuance and TFH were severely 
restricted to about 23%. After finally removing all pilots with < 
45 TFH (assumed to be students) and removing all pilots with 
more than 65,000 TFH (assumed to be either reporting errors 
or data-entry errors),21 a net 65,819 cases (21.7%) remained. 
Table 2 summarizes.

Assuming that these 65,819 cases also contained our 1,868 
accident pilots (2.8%), we subtracted out those 1,868 accident 
pilots, to leave a purer, “non-accident” group, against which to 
compare our accident data. The easiest way to do this was to 
simply subtract Table 1 from Table 2, to produce Table 3.

Total flight hours. Table 4 shows the aggregated (summed) 
total flight hours for accident pilots (top table) and non-accident 
pilots (bottom table). For non-accident pilots, the accident TFH 
were subtracted from the raw data to produce the adjusted TFH 
shown.

Potential Biases in the Data Inclusion/Exclusion Process 
At this point, it is appropriate to raise the issue of whether 

any significant, systematic biases may have occurred in selecting 
the data. Such biases could affect our conclusions. Unfortunately, 
biases are easy to introduce when excluding data that fail to meet 
some selection criteria or when an original dataset itself contains 
some inherent bias. It can sometimes be very hard to distinguish 

20CAIS contains information on all U.S. pilots—but not all information is 
reliably present for those who first became pilots before 1995. If a private-
pilot issuance date is present, then school, examiner, and IR issuance date will 
also be reliably present. Therefore, issuance date became a filter criterion to 
better equilibrate our accident and national samples. This eliminated potential 
uncontrolled biases due to inconsistent data collection for older pilots, though 
at the cost of the data now only reflecting pilots private-certificated after Jan 
1, 1995.
21The 65,000 TFH cutoff was arbitrary but as liberal as any logical person could 
defend. Assuming a pilot flies 6 hours/day, 6 days/week, 50 weeks/year, a TFH 
of even 65,000 equals 36.1 years of flying. The odds of any Figure greater than 
that being accurate seem remote.

Table 2. Non-accident data grouped by school, examiner, and instrument rating. 
Examiner School Examiner Instrument-

rated? ASI BYSCH DPE Total ASI BYSCH DPE Total
 462          0 55,104  55,566 Part 61  291       0 34,088  34,379

No  253   3,649   6,351  10,253 Part 141   122   1,315 2,475    3,912 
  715     3,649   61,455  65,819 Total     413     1,315   36,563  38,291 

Whole group 
Part 61   171       0 21,016  21,187 

YesPart 141   131  2,334   3,876    6,341 
Total     302    ,2334  24,892  27,528 

Table 3. Adjusted non-accident data (Table 2 – Table 1). 
Examiner School Examiner Instrument-rated?ASI BYSCH DPE Total ASI BYSCH DPE Total

 446          0  53,427  53,873 Part 61  285         0 33,114  33,399
No  247    3,571    6,260  10,078 Part 141   121    1,296 2,439    3,856 

  693      3,571    59,687  63,951 Total     406      1,296    35,553  37,255 

Whole group 
Part 61   161       0 20,313  20,474 

YesPart 141   126   2,275   3,821    6222 
Total     287     2,275   24,134  26,696 
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Table 4. Aggregate pilot total flight hours, accident data (term FHijkl in Equation 1 below). 
Examiner School Examiner IR?ASI BYSCH DPE Total ASI BYSCH DPE Total

 27,081            0 1,301,766 1,328,847 Pt 61   5,837       0 463,067   468,904
No   4,031   73,284      79,637    156,952 Pt 141      105    9,006   13,355     22,466 

   31,112      73,284    1,381,403 1,485,799 Total       5,942       9,006      476,422   491,370 

Whole group 
Pt 61  21,244          0  838,699   859,943 

YesPt 141    3,926  64,278    66,282   134,486 
Total    25,170    64,278    904,981   994,429 

Adjusted non-accident TFH (raw TFH - accident TFH). 
Examiner School Examiner IR?ASI BYSCH DPE Total ASI BYSCH DPE Total

637,392               0 41,524,050 42,161,442 Pt 61 325,086             0 13,358,621 13,683,707
No275,782 3,984,039   6,763,411 11,023,232 Pt 141 106,121   806,125 1,444,604   2,356,850

  913,174    3,984,039    48,287,461 53,184,674 Total    431,207      806,125     14,803,225 16,040,557

Whole group 
Pt 61 312,306               0 28,165,429 28,477,735

YesPt 141 169,661 3,177,914   5,318,807   8,666,382
Total    481,967    3,177,914    3,3484,236 37,144,117

between an inherent data bias and an artifact induced by the 
necessary methodology of investigating what we are trying to 
investigate.

Inherent restriction to newer pilots in the CAIS data. Our 
CAIS data are restricted to newer pilots, since collection of school 
and examiner data only started for private pilots certificated 
after Jan. 1, 1995.

Table 3 shows that 26,696/63,951 of those pilots were 
IR (41.7%). This is a slightly lower percentage than the FAA’s 
estimated private pilot IR percentage of 50.5%,22 a circumstance 
for which we have no particular explanation.

Inherent restriction to newer pilots in the NTSB accident 
data. By design, we have imposed the exact same restriction on 
the NTSB accident data. Our original NTSB accident group 
started with the entire set of U.S. serious-to-fatal GA accident 
population during a specified time period. Entire populations 
have no selection bias by definition, because no one has been left 
out. Only subsets of populations can be biased, by excluding 
more individuals of one type than another. 

The requirement that accident pilots also have School, Ex-
aminer, IR, and TFH data at least imposed the same constraint as 
that imposed on the CAIS data. As stated earlier, the vast majority 
of the 7,342-1,868 = 5,474 exclusions (74.6%) occurred because 
school and examiner data could not be retrieved from CAIS. 

So, while we must logically restrict the conclusions of this 
study to newer pilots, this constitutes no particular fatal flaw to 
our study. We must simply not try to generalize the results of 
this study to pilots certificated before 1995. 

Potential bias introduced during the PIC-classification process. 
We can also question whether there might have been any system-
atic bias in the process used to classify pilots-in-command. As 

22Derived from www.faa.gov/data_research/aviation_data_statistics/civil_
airmen_statistics/2007/media/07-air1.xls, and www.faa.gov/data_research/
aviation_data_statistics/civil_airmen_statistics/2007/media/07-air10.
xls,averaged over years 1998-2007, defined as SNIR pilots / Ntotal pilots.

stated, we used a “command status” hierarchy to assign PIC—a 
way of estimating who could/should take control of the aircraft, 
should something go wrong. Could that method of assigning 
PIC introduce biases that might also affect statistical analysis 
downstream? 

To check, we can compare our PIC-selection methodology 
to a much simpler one, namely, the method of eliminating all 
accidents except for single-pilot flights. In a single-pilot flight, 
there is no dispute over who is PIC. Therefore, this is a plausible 
baseline against which to test our PIC selection method.

We first note that a large proportion of the accidents were 
known single-aircraft/single-pilot to begin with (1,775/1,868 = 
95.0%). Hence, any alternate PIC-selection method will produce 
variation only for the remaining 5% of cases and is likely to be slight.

To test that, Table 5—now an analog of Table 1—shows 
frequency counts for single-pilot flights only.

We can compare Table 5’s “actual” values, statistically, to 
“expected” values based on Table 1. To do this, we must first 
normalize Table 1 so that the cell totals we want to compare are 
equal. This is done by multiplying Table 1’s whole-group values 
by 1,775/1,868, non-IR values by 1,002/1,036, and IR values by 
773/832 to equate Table 1’s 2x3 cell totals with Table 5’s. Table 
6 shows the result.

We can now compare each “actual” 2x3 in Table 4 with its 
n-equated (normalized) “expected” analog in Table 6 to statistically 
measure how much our “command status” method differed from 
a “single-pilot-only” method of determining PIC. 

Fisher’s Exact Test23 yields p-values of .956, .992, and .988, 
respectively, all non-significant (NS). This suggests that our method 
of determining PIC did not significantly change the overall School x 
Examiner tabulation ratios. We therefore proceed with our analysis.

23Fisher’s Exact Test is a more-precise substitute for the standard chi-square 
test, particularly useful when expected cell counts are < 5 (a violation of the 
assumptions of C2). 
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Table 5. “Actual” single-pilot accident data, grouped by school, examiner, and instrument 
rating. 

Examiner  School  Examiner  Instrument-rated at 
time of accident? ASI BYSCH DPE Total ASI BYSCH DPE Total

  16        0 1,602  1,618 Part 61    6  0 945     951
No     5      69      83    157 Part 141      1     17  33       51 

   21        69   1,685  1,775 Total        7       17    978   1,002 

Whole group 
Part 61     10       0  657     667 

YesPart 141      4     52    50     106 
Total      14       52   707     773 

Table 6. “Expected” data (Table 1, normalized to single-pilot totals). 
Examiner  School  Examiner  Instrument-rated at 

time of accident? ASI BYSCH DPE Total ASI BYSCH DPE Total
15.2       0 1,593.5 1,608.7 Part 61 5.8  0 942.0   947.8

No 
(pTable 5 v 6 = .992)   5.7     74.1      86.5    166.3 Part 141   1.0     18.4 34.8     54.2 

 20.9       74.1   1,680.0 1,775.0 Total     6.8       18.4   976.9 1002.0 

Whole group 
(pTable 5 v 6 = .956) 

Part 61   9.3       0 653.1   662.4 
Yes

(pTable 5 v 6 = .988) Part 141   4.6     54.8   51.1   110.6 
Total   13.9       54.8  704.2   773.0 

RESULTS

The Analytical Goal
Figure 1 shows the basic analytical structure. We sought 

to examine three major factors in private pilot instruction that 
might be associated with having an accident:

1.	School type (Part 61 vs. 141). 
2.	Examiner type (ASI vs. BYSCHOOL vs. DPE).
3.	Instrument rating (Was IR obtained after the private 

pilot certificate, Yes/No)
while controlling for

4.	Risk (Some metric based on TFH)

Figure 2 now illustrates how the data of Tables 1, 3, and 
4 fit into our primary analytical structure.

As we shall see, the statistical method necessary to analyze 
these data will be somewhat involved. The most basic statistic 
that comes to mind for categorical data is chi-square (C2). Chi-
square would compare the “actual” accident data to a baseline of 
“expected” non-accident data, to tell us whether at least one cell in 
the School x Examiner x Instrument Rating matrix differed from 
the expected pattern.

However, several serious statistical considerations prevent the 
use of C2. First, Figure 2 (left) shows that five of our 24 data cells 
contain fewer than five pilots—a violation of the assumptions of 
C2. Four of these cells are “structural zeros” in our data matrix, be-
cause no Part 61 schools have authority to test their own graduates. 

Second, C2 cannot handle our intended first-pass risk-
exposure continuous covariate of Total Flight Hours (Figure 2, 
right). Finally, C2 cannot compute interactions between major 
factors, which we would like to test.

To investigate the effects of all our factors-of-interest, we 
need a more sophisticated multivariate statistical method. Log-
linear analysis (LLA) is such a technique.24 

Log-Linear Analysis
The basic method. Log-linear analysis (aka multiway fre-

quency analysis; Norušis, 2012; Tabachnick & Fidell, 2001)25 
can handle the setup of Figure 2. The basic logic is the same 
as C2, but the method is far more comprehensive. It produces 
results logically similar to regular analysis of variance (ANOVA) 
but works with frequency count data rather than the continuous 
scores required by ANOVA. Log-linear analysis will not only 
allow comparison of the kinds of data frequency matrices we 
have but can also control for covariates such as risk exposure, can 
calculate interaction effects, and is unfazed by structural zeros.

24Some readers may wonder whether odds ratios or logistic regression would 
be useful here. The answer is that odds ratios do address School and Examiner 
effects but not covariates. Logistic regression can address all effects, was tried, 
but failed to produce a useful model. The huge n of the non-accident data 
overwhelmed the small n of the accident data, resulting in a prediction equation 
that trivially assigned all cases as non-accidents.
25The Poisson is the appropriate modeling distribution to use with these data 
and is used.
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Given our data, LLA can partial out the effects of School, 
Examiner, Instrument Rating, and various interactions, while 
controlling for the effects of a risk covariate. It will do this by 
forming a set of 24 separate mathematical prediction equations, 
one per cell, to reconstruct the frequency counts of each cell in 
the overall 2x2x3x2 Accident x School x Examiner x Instrument 
Rating, i,j,k,l matrix implied by Figure 2.26 Figure 3 shows the 
subscripts i,j,k,l associated with each cell.

Importantly, LLA will test its equations’ parameters27 for 
statistical significance, allowing us to estimate which variables 
and their interactions are reliably increasing or decreasing the 
individual cell frequency counts relative to one cell chosen as 
the reference cell (the black cell in Figure 3). Finally, through 

26The type of log-linear analysis used here estimates parameters by gradient-
descent in multidimensional Poisson probability density function (pdf ) space. 
Poisson distributions belong to a family of frequency distributions based on 
the natural logarithm e (Spanier, & Oldham, 1987). Such distributions share 
the useful characteristic that their indefinite integrals sum to 1.0, making them 
useful as pdfs. Specifically, a Poisson pdf is useful for predicting the likelihood 
of given values of discrete occurrences (.e.g., the probability of having 1, 2...n 
accidents), given a known, continuous maximum likelihood estimate (e.g., 
.001 accidents).
27A parameter is a weight or coefficient. Think of each parameter in Equation 
1 as representing the influence of an independent variable (e.g., A) with unit 
value 1.0 multiplied times that cell’s parameter for that variable (e.g., A1).

odds ratios (Hollander & Wolfe, 1999), LLA has the capability 
of telling us the relative change in risk posed by being a member 
of one group as opposed to another.

The main disadvantage of LLA is that results can be tricky 
to interpret. Multiple “significant” models are possible, given our 
data. So, the model we finally settle upon must be guided by a 
meaningful underlying logic. We do not simply run LLA with a 
saturated model (one including all main effects plus all possible 
interactions) the way we typically do with ANOVA. A saturated 
log-linear model will always fit the data perfectly, so we typically 
seek to eliminate as many statistically non-significant parameters 
as possible. This is an arcane point that we shall return to pres-
ently after some additional background information.

Understanding the mathematics. To completely understand 
LLA, we need to understand its mathematical logic, which differs 
from most other statistics. Equation 1 shows how each of our 24 
prediction equations will be symbolized. By adjusting the shared 
parameters of these 24 equations, LLA’s computational algorithm 
will try to make each cell’s prediction equation duplicate that 
cell’s observed frequency count.

For instance, for a model based on the Poisson distribution, 
containing all main factors plus all 2-way interactions, the ijklth 
cell’s predicted frequency count will equal (see Equation 1). 

Figure 3. Cell subscripts associated with the 2x2x3x2 Accident x 
School x Examiner x Instrument Rating matrix representing Table 1 
and Table 3. Cell2232 is the reference cell whose cell frequency count 
will be e (see text). 

Figure 2 (left) now illustrates how the data of Tables 1, 3, 
and 4 fit into our primary analytical structure.

Figure 2 (top). The front 2x2x3 matrix represents aggregated 
accident data from Table 1. The rear matrix shows non-accident data 
from Table 3 (bottom). Corresponding TFH from Table 4, which will 
form the basis for a risk covariate. 

Figure 2 (right). The front 2x2x3 matrix represents aggregat-
ed accident data from Table 1. The rear matrix shows non-
accident data from Table 3 (bottom). Corresponding TFH 
from Table 4, which will form the basis for a risk covariate.
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Here e is the natural logarithm (≈2.718), which is raised 
to a lengthy exponent. This exponent contains multiple terms 
(some of which may end up as zeros). Following basic algebra, 
any parameter in Equation 1’s exponent whose value is greater 
than 0 will, therefore, increase that cell’s predicted frequency 
count, while any parameter less than 0 will decrease it.

Describing first-order terms, the parameter µ (mu) rep-
resents a global constant added to every cell. The parameter Ai 
represents the “main effect of accident type,” denoting either 
accident pilots (A1) or non-accident pilots (A2). Sj is the “main 
effect of school type,” denoting either Part 61 (S1) or Part 141 
(S2). Ek is the “main effect of examiner type,” denoting either 
ASI (E1), BYSCHOOL (“by school authority,” E2), or DPE 
(E3). I is the “main effect of instrument rating,” denoting either 
instrument-rated (I1), or non-instrument-rated (I2). R is a global 
coefficient representing the risk covariate, which will be indi-
vidually multiplied by each ijklth cell’s unique aggregated risk 
covariate (the “sum of all risk” for every pilot in that cell, Rijkl).

Describing second-order terms (2-way interactions), AiSj is 
a single number (not a multiplication of two separate numbers) 
representing the interaction of the ith A term (Ai) and the jth 
S term (Sj). AiEk performs a similar function for the interaction 
of A and E. AiIl, SjEk, SjIl, and EkIl behave similarly for their 
respective interactions.

As previously stated, every cell equation’s exponent will 
contain the global constant µ. In practice, because terms in the 
exponent can assume values of zero, one cell’s exponent will con-
tain only µ, since all other terms zero out. That cell is designated 
as the reference cell (the black cell in Figure 3). Its referents are 
i2 = non-accident, j2 = Part 141, k3 = DPE, l2 =non-instrument-
rated, nijkl = n2232, and eµ is defined as its cell frequency count.

Next, terms such as AiSj represent 2-way interaction ef-
fects unique to each cell.28 Recall that an interaction term (e.g., 
A1S1) is not the multiplication of A1*S1. Rather, A1S1 is simply 
one number—the parameter representing an effect on all cells 
containing Part 61 pilots who also had an accident.

Finally, covariates are slightly more abstract. The term 
R*Rijkl represents a global covariate parameter, a single coefficient 
R, which will be multiplied by the cell in question’s aggregated 
risk total (the “sum of all risk” for every pilot in that cell), to be 
described shortly. Additionally, a series of R-terms describe risk-
interaction coefficients associated with Ai, Sj, Ek, or Il. These are 
labeled RAi, RSj, REk, RRl, respectively, and are similarly multiplied by 
Rijkl to help form the exponent of each cell’s prediction equation.

So, this is the basic mechanism of general LLA. A set of 
parameters unique to a given model will be adjusted so that each 
of our 24 prediction equations will try to duplicate the actual 
pilot frequency count belonging to that cell. While the LLA 
procedure is running, a multidimensional parameter space will be 
generated, producing a same-dimensional error space, which can 
be globally minimized by gradient-descent numerical methods.

28Note that Equation 1 does not contain the 3-way interaction AiSjEk. The 
reason why is explained in Appendix B.

It is important to note that, unlike many other statistics: a) 
It is up to us to choose the model—the terms we want in Equation 
1’s exponent; b) Our statistical package (here, SPSS) will then 
follow a numerical error-minimization routine (SPSS, 1999) to 
arrive at values for parameters that best predict the real-world 
data, given our model; c) However, more than one “significant” 
model may exist. Therefore, the assumptions underlying each 
model’s parameters are critically important.

Assumptions underlying our model. Log-linear parameters 
are abstract and require explanation. For instance, we designated 
the parameter A as the “main effect of accident type.” In do-
ing so, we theoretically assumed that there were a multitude of 
factors at work, which, taken together, represent how common 
accidents are, relative to non-accident flights. But, these factors 
are all lumped together, indistinguishably, so the term A tells 
us nothing specific about any single factor. One such factor 
might be “how well the pilot plans the flight.” Another might 
be “how well she pays attention during landing.” There could 
be hundreds of such influences on accidents. However, we are 
not interested in those particular details, so we combine them 
into the single parameter A. 

What we need to clearly understand is that all A represents 
is some adjustment to the exponent in Equation 1. A is not a main 
effect in the sense we typically think of or care much about.

Likewise, the parameter S embodies “main effect of school 
type.” However, like A, S is not something we care particularly 
about, all by itself. It merely embodies the relative numbers of 
pilots who graduate from Part 61 versus Part 141 schools. This, 
again, is merely a fact, just like the fact that accident flights are 
less common than non-accident flights. Table 3 showed us that 
far more pilots go to Part 61 schools. So, that relative proportion is 
what S represents—not whether one type of school shows a greater 
or lesser chance of graduates subsequently having an accident.

Similarly, the parameter E represents “main effect of 
examiner type.” But, again, this is only a fact. Table 3 showed 
that far more pilots are tested by DPEs than ASIs, and that is 
all E stands for.

In LLA, the interaction parameter AiSj is actually the one 
that tells us whether getting one’s private certificate from a Part 
61 or Part 141 school is associated with subsequently more or 
fewer relative accidents. Likewise, the interaction parameter 
AiEk is the one that tells us whether pilots tested for their private 
certificate by an ASI or DPE are associated with subsequently 
more or fewer relative accidents. 

So, unlike ANOVA, where main effects are of first-line 
importance, in our particular log-linear analysis, interactions 
are where we will first discover the kinds of effects we are most 
interested in.

Finally, as you might suspect, the 3-way interaction param-
eter AiSjEk might shed light on whether a particular combination 
of school and examiner has any effect. Unfortunately, there is 
a serious statistical issue with higher-order interactions. That 
issue is complicated, though, so we will postpone discussing it 
until Appendix B.

ljkjlkijklSjijklIlijklEkjilikiijklAiijkllkji ISESIERRRRRRSAIAEARRRRIESA
ijkl e +++++++++++++++= *****count Predicted µ (1)
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The data. We use two types of data here. First, there are the 
frequency counts for accident and non-accident pilots, parsed by 
Accident, School, and Examiner, and set up as in Figure 2. The 
SPSS procedure we use (GENLOG) does not require normaliza-
tion of the non-accident data. That is handled automatically by 
the GENLOG computational algorithm (SPSS, 2007).

Second, we have the covariate—our metric of risk expo-
sure—sampled on Aug. 28, 2007.

Constructing the covariate. As one may imagine, detailed 
statistics on each pilot’s risk exposure are not readily available. 
For one thing, risk is extremely complex and extremely hard to 
quantify. Additionally, many details about specific types of risk 
go unrecorded, since the task of keeping those kinds of detailed 
records would be quite costly. Finally, actual risk varies widely, 
depending on a host of factors such as the type of flight, phase 
of flight, and type of aircraft.

Although imperfect, total flight hours is a widely used 
proxy for risk exposure in aviation (Craig, 2001; Nakagawara, 
Montgomery, & Wood, 2002). Researchers usually assume that, 
in large samples, the statistical “noise” inherent in risk will aver-
age out, and that flight hours will correlate (covary) significantly 
with an underlying, theoretical construct of “true flight risk.” 
This is a reasonable assumption. Nevertheless, we need to keep 
in mind that the correlation between flight hours and risk is far 
from perfect, so this measure of “risk” is a crude estimate at best.

When we speak of “TFH,” it is important to distinguish 
between “total flight hours accrued over a pilot’s career” versus 
“total flight hours accrued over some standard period of time,” 
indicating a change (“delta”, δ) in flight hours δTFH = TFHt2 – 
TFHt1.

A risk measure could arguably be better constructed from 
δTFH than from TFH accrued over a pilot’s lifetime. Nonethe-
less, there are difficulties in trying to uniformly compute δTFH 
for all pilots, for instance: a) The length of such a “standard 
unit of time” is hard to establish; b) Many GA pilots do not 
fly regularly, and vary considerably in TFH, even over a fixed 
period of time; c) Some phases of flight (e.g., takeoffs and land-
ings) are more dangerous than the cruise phase, yet most flight 
time is accrued in cruise, and; d) Formal, date-and-time-specific 

records of TFH are not uniformly and accurately kept by U.S. 
authorities. Instead, FAA and/or NTSB merely get a “snapshot” 
of TFH during medical certification, pilot certification, and/or 
at the time of an accident.29 This snapshot is often not verified 
by checking against a pilot’s logbook.

For U.S. non-accident pilots, the best available flight hour 
snapshots currently come from the FAA’s Aerospace Medical 
Certification Division/Document Imaging Workflow System 
(DIWS), transcribed from Form 8500-8 gathered during pilot 
medical re-certification. For the private GA pilot, this involves 
Class-3 medical certification, recurring every 5 years for pilots 
under 40 years of age, and every 2 years thereafter. 

Actual experience with these raw data reveals weaknesses 
relevant to our methodology. For one, it emerged that TFH 
reported during medicals are often estimates, rather than the 
exact current records taken from logbooks. This was confirmed 
by a Doctor of Medicine from AAM-630’s Medical Research 
Team (Webster, 2010). In some cases, pilots even reported hav-
ing fewer TFH at the time of their latest medical exam than at 
their previous medical, implying δTFH < 0. Since δTFH would be 
the very metric used as a covariate, imprecision in either TFHt1 
or TFHt2 contributes to imprecision in δTFH.

Moreover, using δTFH as a metric of risk assumes that risk 
is constant over the career of a pilot. To the contrary, we know 
it is not. Many factors affect the risk of a given flight. Notably, 
student pilots are typically at fairly low risk, because they have 
an instructor that is providing direct oversight. High-hour pilots 
are typically at low risk, because they are seasoned pilots. It is 
newly minted pilots who prove to be at greatest risk, statistically. 
Mathematically, the risk function is nonlinear, meaning risk is 
not a straight-line function of δTFH. It resembles more a skewed 
hump, tapering off at both extremes of TFH.

Therefore, to model this nonlinear risk, we decided to 
develop a new metric. This Advanced Risk Covariate (ARC) is 
detailed in Appendix A. At this point, ARC is based on TFH 
(not δTFH.), and simply calculates the actual chance of having 
an accident at a fixed, specific value of TFH, which we call a 
“point-estimate” of risk. Point-estimates are inherently less ac-
curate than δ estimates but are easier to compute.

29Even though “past-90-day” flight hours are often kept, the 90-day estimate is 
too short a time to be statistically stable for our uses. A “past-365-day” estimate 
would be far more useful but is unavailable.
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Since we have both accident data and non-accident data 
spanning the same time period, ARC is derived from our actual 
data. Figure 4 illustrates a logarithmic plot of the basic function 
overlaid on one of our actual instrument-rated data groups.

Since LLA operates on aggregated data, individual pilots’ 
values of ARC were summed to form an Aggregated ARC 
(AARC), as shown in Figure 5. The AARC then becomes the 
risk covariate used in LLA.

Summary of the final model. For the interested reader, Ap-
pendix B details the evolution of the log-linear modeling, with 
goodness-of-fit and parameter estimates, and walks through the 
logic of how the final model came to be. There, we also detail 
why we can effectively ignore the “main effects” of Accident (A), 
School Type (S), and Examiner Type (E), as well as the interac-
tions not involving Accident. 

 a b 
Figure 5. a) Aggregated TFH (from Figure 2, bottom); b) The corresponding Aggregated Advanced 
Risk Covariate. The AARC represents Rijkl the “sum of estimated flight risk” for each cell. 

ljlkijklSjijklIlijklEklikiijklAiijkllkji ISIERRRRRRIAEARRRRIESA
ijkl e +++++++++++++= *****count Predicted µ (2)

For the sake of brevity, the final model is presented now, 
as Figure 6. To reiterate, the 2-way interactions involving Ac-
cident are where we will locate the effects of School, Examiner, 
Instrument Rating, and Risk, if any are significant.

This model consists of main effects plus all 2-way inter-
actions of main effects except School x Examiner (SjEk) and 
Accident x School (AiSj), which were found to be insignificant. 
Mathematically, the general cell frequency count equation for 
this model is shown in Equation 2.

Here, the 2-way interactions of AxS AxE are the primary 
factors of interest, which we are directly tasked to investigate. 
AxS is absent from this model, because it was found in an earlier 
model to be insignificant (detailed in Appendix B). That meant 
that school-of-first-certificate had no significant effect on sub-
sequent frequency of accidents, given these data.

Figure 4. The Advanced Risk Covariate, a 
mathematical risk function based on our accident 
and non-accident data. It takes, as input, a value 
of TFH, and outputs an estimated accident rate, 
smoothing out noise in the data. There is a 
separate version for instrument-rated and non-
instrument-rated GA pilots (IR data are shown). 
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The interaction AxE represents the effect Examiner had on 
accidents. Our final model suggests that pilots tested for their first 
certificate by an ASI (cell A1E1) eventually had significantly fewer 
subsequent accidents than the reference group (DPEs, p=.008).

Importantly—this particular finding is based upon an 
extremely small number of only 22 accidents (see Figure 2, 
10+5+6+1=22). As such, it is a textbook example of how “statisti-
cal significance” is not the same as “practical significance” to the 
conservative researcher mindful of the big picture. We have to 
ask ourselves that if we had access to all possible data, how likely 
would we be to get the same results? Given the extraordinary dif-
ficulty we encountered in matching pilots to data, spanning three 
separate databases that all had difficulty “talking to each other,” 
and, given the extremely high data-loss rate (71.3%),30 exactly 
how much practical significance should a prudent person assign 
to this one particular result? The circumspect answer is “Little.”

Second, that the Aggregated Advanced Risk Covariate 
seems to relate significantly to accidents (“p=.000” in SPSS 
does not mean “zero probability”; it means “p<.0005”). Higher 

3065,819 usable pilots remained from an initial group of 302,685 (21.7%).

AARCs are associated with higher accident frequencies, which 
is what we hope for and expect from a risk metric. That alone 
does not establish AARC as a valid risk metric. It simply makes 
it arguably worthy of future investigation.

Third, in the A1I1 interaction, we see that instrument-rated 
pilots appear to have higher accident rates (p=.002). This is 
somewhat vexing, given that Appendix B shows that the model 
containing main effects and all 2-way interactions showed only 
near-trend for this effect (p=.106). We might well ask ourselves 
whether this is anything we ought to call meaningful, given 
that, as we began eliminating nonsignificant interactions, freed 
up variance could then be “fought over” by other parameters. 
That phenomenon (of previously insignificant factors becom-
ing “significant” during backwards parameter elimination) is 
obviously a characteristic of, not just LLA, but of statistical 
modeling in general. And, it is one that we need to be wary of, 
as experienced critics of statistical methods.

Finally, we should note that, while it is possible in LLA to 
compute odds ratios for significant effects, we elect here not to 
do so, based on the argument that our input data were simply 
too stressed and/or sparse to take the analysis to that level of 
precision.

Figure 6. (top) Final-model parameters. This is detailed in Appendix B, including the goodness-of-fit test 
and residuals. Large colored areas contain significant values but do not address our primary focus of 
Accidents. 
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DISCUSSION

Brief Summary of the Research Hypothesis, Methodology, 
and Results

This study was originally tasked to address what effects a 
general aviation (GA) pilot’s type of education and certification 
testing might have on his or her subsequent flight safety record. 

Given that there are many kinds of pilot instruction that 
could be tested, “education type” was operationalized as private 
pilot instruction in either a 

•	Part 61 or 
•	Part 141 school

“Certifying examiner type” was operationalized as pilots 
tested for their private pilot instruction by

•	Aviation Safety Inspector (ASI),
•	School Authority (BYSCHOOL, Part 141 graduates 

only), or
•	Designated Pilot Examiner (DPE)

Because of the unavailability of earlier reliable FAA school 
and examiner records, results herein are restricted to pilots 
receiving their private pilot certificate after Jan. 1, 1995. No at-
tempt should be made to generalize results to pilots certificated 
before then.

The experimental design implied by these factors-of-interest led 
to the following data setup, shown previously as Figure 2 and shown 
here again for convenience. Statistically, we compared frequency 
counts for NTSB accident data to a baseline of FAA non-accident data. 

This experimental design compared 1,838 U.S. general aviation 
pilots involved in serious-to-fatal accidents during the time period 
1/1/2003 to 8/26/2007 to a matched group of 63,951 non-accident 
U.S. GA pilots retrieved on Dec. 8, 2007.

To statistically help control for effects of pilot flight experi-
ence and flight-risk exposure on accidents, a) “Pilot experience” 
was operationalized partly as whether or not a pilot was instrument 
rated, and; b) Pilot total flight hours (TFH) were used to create a 
statistical risk covariate capable of predicting accident frequency 
based on TFH (see Appendix A). The Figure shown previously as 
Figure 5 illustrates. 

Subsequent log-linear analysis produced the following main 
results:

1.	 Pilots who received their private pilot certificate from Part 
61 schools were no more or less likely to subsequently 
have an accident than graduates of Part 141 schools (p 
>.70, NS).

2.	 Pilots who were examined by an Aviation Safety Inspec-
tor for their private certificate appeared less likely to 
subsequently have an accident than those examined by 
a Designated Pilot Examiner (p < .01). However, this 
result is suspect, because it was based on a total of only 

Figure 2. Data setup. The front 2x2x3 matrix represents aggregated 
NTSB accident data from Table 1, and is partially transparent, to 
show the rear matrix of aggregated FAA non-accident data from 
Table 3. 

   

Figure 5. Total flight hours (at left) were used to produce a covariate representing known accident risk at 
various values of TFH. Values for individual pilots were then aggregated (at right) to form a total flight-risk 
value for each data cell. 
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22 accident pilots and because of the extremely high 
data loss rate (71.3%) prior to statistical analysis, which 
may have produced different results if more pilots could 
have been successfully matched to their school, examiner, 
instrument rating, and flight hours data.

Practical Significance of Results 
The basic question of interest here was “Do first training 

school type and certifying examiner type affect a U.S. general avia-
tion pilot’s subsequent aviation safety record?” 

The results of this study essentially imply that they do not. 
To the contrary—at least for GA pilots receiving the private 
pilot certificate from 2003-2007 and for whom data could be 
obtained—Part 61 graduates’ subsequent accident rate appeared 
on a par with Part 141 graduates, and pilots tested by DPEs 
appeared equivalent to those tested under school authority. 
Graduates tested by ASIs showed a statistically lower accident 
rate, but this was based on a sample of only 22 pilots, rendering 
that result unreliable from a practical point of view.

RECOMMENDATIONS

Difficulties encountered during this project are elaborated 
in Appendix C. To summarize, the single greatest difficulty in 
trying to perform this study was trying to match pilots across the 
FAA and NTSB databases. The bulk of the problem stems from 
the lack of a common pilot reference designator (identification 
number) between NTSB and FAA records.

Past attempts have been made to integrate these kinds of 
data, the latest being the Bioinformatics Research Team of the 
FAA’s Civil Aerospace Medical Institute development of a pro-
totype “data warehouse.” This was intended to assist in research 
efforts associated with statistical and epidemiological studies of 
the U.S. civil pilot population (Peterman, Rogers, Véronneau, 
& Whinnery, 2008). It incorporated NTSB and FAA Accident/
Incident data, CAIS data, and medical certification data.

However, like many research efforts, this one may have 
been overlooked. So, if a recommendation were to be made 
on the basis of our experience with the present study, it would 
be the modest proposal that NTSB and FAA share what FAA 
calls their “UniqueID” designator, which allows the FAA CAIS 
and DIWS databases to “talk to one another.” If this UniqueID 
could be extended to NTSB records, many problems that now 
exist trying to communicate between databases would disappear.

A second recommendation would be for the FAA to develop 
publically available user’s manuals for CAIS and DIWS. NTSB 
currently has not only what amounts to such a user manual 
(their “data dictionary”), but also a completely searchable, pilot-
deidentified accident database (www.ntsb.gov/avdata/) that can 
be downloaded and queried by anyone.

A third recommendation would be for the FAA to augment 
the flight hours information collected from pilots during their 
medical certification (FAA Form 8500-8). Particularly useful 
would be 12-month total flight hours, because this could form a 
fairly reliable and useful input to the Advanced Risk Covariate that 
was developed for this project (Equations 3, 4 in Appendix A).
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APPENDIX A

Development of the Advanced Risk Covariate (ARC) 
When raw pilot Total Flight Hours (TFH) was first tried as a risk covariate during preliminary log-linear 

analysis (LLA), it was found insignificant (p=.075). This prompted us to graph out our data’s frequency 
distribution for TFH, shown in Figure 7a. 
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Figure 7 (a). Frequency distribution of accidents for all pilots (combined instrument-rated and non-instrument-
rated). The x-axis is the base-10 logarithm of TFH. The y-axis is the percentage of total accidents belonging 
to each x-axis frequency bin. (b) Similar data for instrument-rated pilots, graphed as accident rates (each 
bin’s height equals the proportion of #accidents/(#accidents + #non-accidents). 

Figure 7a is reminiscent of Craig’s (2001) well-known book The Killing Zone, and shows, as he did, that 
the majority of GA accidents happen to pilots having intermediate values of TFH. 

For our purposes, the basic problem is that LLA mathematically “wants” to interpret TFH values at one 
end or the other as “greater risk,” which we can easily see is simply not true. It is the intermediate values of 
TFH that seem to have greater proportions of accidents. Figure 7b recasts our data as accident rates, which 
confirms this more firmly. Accident rates also form a humped distribution. This is particularly easy to visualize 
in the log(x) domain, which shrinks the long right-hand tail of the x-axis to more manageable dimensions. 

The solution to this problem of “risk non-linearity” is to develop a metric that can justifiably be used as a 
true statistical covariate—one that directly expresses, as a scalar value, the average probability of having an 
accident over a fixed period of time, given one’s TFH. Mathematically speaking, we want to express risk = 
f(TFH), that is, “risk is a function of TFH.” Then, we want to precisely define the function f to the highest 
degree of accuracy possible. 

The difficulty in defining f, as Figure 7b shows, is noise in the data. Each data bin’s y-value of risk is 
calculated easily enough, as naccidents/(naccidents+nnon-accidents) over some fixed period of time (as stated, ours was 
Jan 1, 2003 to Aug 28, 2007). However, some bins have very low numbers of pilots. This makes them much 
more susceptible to chance factors (a.k.a. statistical “noise”). The net result is difficulty fitting a mathematical 
modeling function to the data. We do not want the fitting process to be unduly influenced by extreme values 
belonging to small samples. 

The solution lies in weighting the data. Before estimating f, what we can do is to generate a new data file 
having as many copies of each bin’s accident rate as there were pilots that went into generating that rate. For 
example, if a particular bin’s accident rate of 0.01 was generated by having 10 accidents and 990 non-accidents 
(10/(10+990) = 0.01), we then weight the data, effectively generating 1000 copies of the value 0.01 to represent 
that bin’s contribution to the overall data. In this fashion, bins having extreme accident rates—but based on low 
numbers of pilots—will have less of an influence on the final estimate of f than they would if each bin’s 
contribution were merely weighted equally as every other bin’s. 

The actual estimation of f is based on numerical methods. Numerical methods are mathematical techniques 
used to find solutions to complex problems in circumstances where no exact mathematical solution exists to a 
given problem. Ours is such a case. In our case, the procedure for finding f involves minimizing the total sums-
of-squares [the sum of (each difference between the actual data and the prediction) squared] for the nonlinear 
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gamma () probability density function. The method is complex, but is quite easily done by programs such as 
Mathematica (Wolfram Research, 2010). 

The  pdf is chosen, based on work done by Knecht (in review), using NTSB accident data similar to those 
used here. Briefly, it was shown that a  pdf was capable of fitting eight sets of GA data taken from two time 
periods (1983-2000 and 2000-2007), two levels of accident seriousness (serious and fatal), and two levels of 
pilot instrument rating (instrument rated and non-instrument rated). 

Using similar methodology, the present data were first parsed by instrument rating (IR versus non-IR). 
Accident rates were then calculated for the binned data and then presented to Mathematica’s 
NonlinearModelFit function to find solutions to the general form shown in Equation 3: 

     

 
 





 /ln1ln TFH

RR
eTFHArateaccidentARC  (3) 

R Instrument rating (IR or non-IR) 
A Amplitude 
 Shape parameter of pdf

 Scale parameter of pdf

 Location (shift) parameter 
 The value of the Euler gamma function at 

This resulted in the following parameter estimates: 

RIRA0.114905 71.1448 0.0990758 1.3252*10-7

RNIRA0.176691 20.4944 0.34691 9.26536*10-7

Given these values, each pilot could now be assigned an ARC value, based on Equation 3. Since LLA is 
based on aggregated data, we then generated an Aggregated ARC (AARC) by simply summing the ARC 
values for all pilots within each of our 24 data cells (see Fig. 5). This AARC then substituted directly for what 
was originally TFH in LLA. 

Limitations of the Method 
The mathematically sophisticated reader will immediately spot the main limitation of this method, in that it 

is logically an “instantaneous approximation” (aka a point-estimate) of risk. As such, the ideal form for a better 
relative risk calculation would be: 


2

1

int

t

t

TFH

TFH
RR ARCARC  (4) 

where ARCRint is the definite integral of Equation 3, based on TFH from time t1 to t2, with t1-t2, of course, being 
equal for all pilots, and long enough to give a stable statistical estimate (say, 12 months). 

The problem, naturally, is that we do not have TFHt1-t2. In some cases, we can get TFH90days, but that is not 
long enough to be a reliable indicator of true flight time. Therefore, what we are technically doing is basing 
AARC on the assumption that ARC is constant over a given time period and that aggregated data will be more 
stable than a single estimate. This is clearly not the best of all possible worlds, but, given our data, it is 
arguably the best we can do for the present. 
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Mathematica Code 
Below is the Mathematica code used to weight the data and then parameterize Equation 3 for IR and non-

IR pilots. Each data triplet in the “baseFile” (e.g., {717, 3.91, 0.0042}) represents the ith frequency bin’s data, 
{ni, ln(TFHi), accident ratei}.
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APPENDIX B

Evolution of the Log-Linear Modeling 

The “Main-Effects-Only” Model 
Equation 5 (below) represents the initial model with main effects only. Recall that we are trying to build a 

set of equations to reconstruct each ijklth cell’s frequency count. The subscript 

 i represents Accident (Ai) (1=Yes, 2=No),  
 j represents School (Sj) (1=Pt 61, 2=Examination by School Authority, 3=Pt 141),  
 k represents Examiner  (Ek)(1=ASI, 2=By School Authority, 3=DPE), and  
 l represents Instrument Rating (Il) (1=Instrument-rated, 2=Non-instrument-rated).  

The global risk covariate is R, and Rijkl is the Aggregated Advanced Risk Covariate (AARC) for cellijkl.

ijkllkji RRIESA
ijkl ecountPredicted *   (5) 

Keep in mind that negative parameters (ones less than 0) have the effect of lowering cell count, while 
positive parameters increase the cell count. 

Table 7a. The “main-effects-only” model, cell counts and residuals. 
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Table 7b. The “main-effects-only” model, parameter estimates and goodness-of-fit. 

This is not a fine-tuned model. The goodness-of-fit tests indicate that the cell-frequency predictions deviate 
significantly from the actual data, and high values for the residuals bear this out. 

Consistent with our prior explanation of the logic underlying log-linear analysis (see Results/Log-linear 
analysis/Assumptions underlying our model), most main effects are significant (p < .001): 

 There are significantly fewer accidents than non-accidents (A1= -2.619, Z= -78.105, meaning “large 
decrease”). But, this is merely an expected fact. 

 There are significantly more Part 61 graduates than Part 141 graduates (S1=1.098, Z=33.847). This is 
also merely a fact. 

 Many fewer pilots are tested by ASIs than by DPEs (E1= -3.471, Z= -75.615), and fewer pilots are 
tested by school authority than by DPEs (E2= -.519, Z= -25.03). Again, these are merely facts. 

 The global risk covariate (AARC) is significant (R= 0.002, Z= 33.647). The Z>0 implies that higher 
values of global risk have higher cell frequencies. However, keep in mind that this effect applies to 
both accident and non-accident groups, so is not really a discriminator for accidents. 

Instrument rating (I) is not significant in this model. However, keep in mind that we are only finding global 
influences on cell frequencies at this point—not influences on accidents alone. For instance, there is about the 
same ratio of non-IR to IR pilots in both accident and non-accident groups. From Tables 1 and 3, that odds 
ratio is (1036/832)/(37255/26696) = .892—not far from the statistically neutral ratio of 1.0. 

The point is that “main effects” here are actually trivial and relatively uninteresting. 

The “main-effects-plus-all-2-way-interactions” model 
Logic and the previous model direct that we should include all main effects, because they will logically 

explain much of the variance, even though these are simply uninteresting facts. The next step is to add all 2-
way interactions, represented by Equation 1 (which, as you will recall, earlier served as a prototype of the LLA 
methodology). 

ljkjlkijklSjijklIlijklEkjilikiijklAiijkllkji ISESIERRRRRRSAIAEARRRRIESA
ijkl ecountPredicted  *****  (1) 

Data-fit is perfect, as shown by the perfect frequency counts and zero-residuals in Table 8a. 
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Table 8a. The “main-effects-plus all-2-way-interactions” model, cell counts and residuals. 

As expected, most of the main effects are still significant. However, some of the explained variance now 
lies in the interactions. 
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Table 8b. The “main-effects-plus all-2-way-interactions” 
model, parameter estimates. 
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This is a good opportunity to illustrate Equation 1. So, consider the modeling equation SPSS produces for 
cellijkl = cell1111. Figure 5b supplies AARC=R1111=.2447. Table 8b supplies cell exponents. 

ljkjlkijklSjijklIlijklEkjilikiijklAiijkllkji ISESIERRRRRRSAIAEARRRRIESA
ijkl ecountPredicted  *****

1111111111111111111111111111111111111111 *****
1111

ISESIERRRHRRSAIAEARRRRIESA SREAecountPredicted  

096.1202.342.1)2447.*030(.)2447.*005(.)2447.*114(.241.519.1551.2)2447.*076(.)2447.*033(.252.1982.757.1451.2984.5  e
81.9283.2  e

We can see in Table 8a that this produces (within rounding error) the observed value of cell1111 = 10. 

Accident-related effects. Interactions are where we expect to find any effects of School, Examiner, 
Instrument Rating, and/or AARC. Let us first examine the effects of the 2-way interactions on accidents. 

Table 8b shows a non-significant Accident x AARC interaction (RAi=.076, p=.794), implying that our 
aggregated risk estimates are about the same for accident and non-accident pilots. 

Likewise, all Examiner (AiEk= -2.551, -.929), Instrument Rating (AiIl=1.519), and School (AiSj=.241)
interactions are non-significant. Recall these are the primary factors we originally set out to test. 

Additional interaction effects. The only remaining effect that is statistically significant at the p<.05 level is 
the School x AARC interaction (RSj= -.030, p=.027). The negative value of RSj implies that pilots first-
certificated from Part 61 schools may have pilots in a lower risk range than Part 141 schools. The reason is 
unclear.

Assessment of this model. The main peril of this “main-effects-plus-all-2-way-interactions” model is that it 
may be overfitted, meaning that it may have too many parameters, given the 24 data cells whose cell counts we 
are trying to fit. There are now six main effects (including the constant ) plus 5(5-1)/2 = 10 interactions, 
making a total of 16 effects operating on 24 data cells. 

Standard modeling procedure calls for removing some nonsignificant terms. One logical approach is to 
start eliminating non-significant 2-way interactions one by one, starting with the least-significant interaction, 
and monitor the effects on model fit and residuals. This is time-consuming but a conservative way to approach 
the situation. 

Backwards Elimination of Nonsignificant 2-Way Interactions 
Table 8b shows that the least-significant 2-way interaction is School x Examiner (SjEk, p=.973).

Eliminating that still produces good model fit with low residuals, shown next in Table 9. 
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Table 9. Backwards elimination of nonsignificant 2-way interactions. 

From this, we see that Accident x School (AiSj, p=.687) is now the leading candidate for elimination (the 
Examiner x AARC interaction REk is not eliminated, despite RE2=.741, because RE1 is significant at .045). 

Eliminating AiSj leads to the next (and final) model, shown below in Table 10 (and, previously, as Figure 
6).
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Table 10. Continuing backwards elimination to 
the next (and final) model (shown previously as 
Figure 6). 

which still produces good fit, and fairly low residuals. 

Final Model 
At this point, convention begs us to stop, the reason being that all main effects must remain included, plus, 

we see that all 2-way interactions now have at least one statistically significant component. Therefore, we 
choose to accept this as our final model, and are nearly ready to return to the Results section. 
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To summarize this final model, given these data: 

 Most main effects were significant 
o There were fewer accidents than non-accidents 
o More pilots attended Part 61 schools than Part 141 schools for their first certificate 
o There were more non-instrument-rated (non-IR) pilots than instrument-rated (IR) pilots 

 Some first-certificate-related factors appear associated with accident frequency 
o School-of-first-certificate was not associated with accident frequency 
o ASI as Examiner-for-first-certificate was associated with lower accident frequency 
o Having an instrument rating was associated with higher accident frequency 

 The risk covariate (AARC) developed for this project significantly related to 
o Accident frequency(higher AARC was associated with greater accident frequency) 
o Examiner type(ASIs were associated with pilots with lower AARCs) 
o Instrument rating(IR pilots were associated with higher AARCs) 
o School type(Part 61 pilots were associated with lower AARCs) 

Why We Avoid Analyzing Highest-Order Interactions 
The primary problem with highest-order interactions (e.g., AiSjEkIl) in LLA, is that we can fit any data to a 

model containing only the highest-order interaction. As proof, we merely need consider that the highest-order 
interaction would actually be (in our case) a set of 24 individual coefficients, one per cell, free to vary for every 
individual cell. As such, it would be unaffected by any main effect or lower-order interaction. Ergo, the entire 
cell’s frequency count could be duplicated by that one, unique parameter, rendering all others unnecessary, and 
trivializing any model based on it. 

Caveats
Despite this array of seemingly careful methodology and advanced statistical techniques, one extremely 

important practical thing to keep in mind is the fact that, of our 24 data cells, four had 0 pilots, one cell had just 
1 pilot, one cell had only 5 pilots, and another only 6. In practical terms, what that means is that—despite 
impressive-looking mathematics and 3-decimal-place significances—our results may be unstable, not because 
of our analytical method, but because of the quality of data input to that method. In other words, if we 
resampled the data, say from a slightly different time period, we might not get the exact same pattern of results.  

This is a problem with the data themselves, not necessarily with the mathematics or SPSS. But, being 
careful and prudent researchers, it behooves us to honestly remind ourselves that instability may always lurk 
within small numbers whenever we sample those, no matter how careful we try to be or how meticulous our 
analysis. 

That said, we can now return to the Results section. 
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APPENDIX C 

A large number of issues emerged while using the NTSB and FAA databases. Some of these were minor 
and correctable, others were major and/or uncorrectable. However, all contributed significant difficulty to this 
project.

Issues With NTSB data 
1. Missing data and/or data entry errors were common (sometimes blank cells, sometimes the numeral 0 

where, for example, flight hours should be). We assume that all pilots involved in investigated 
accidents are in the database. But, data are often missing for a given pilot. 

2. Pilots showing an accident event date earlier than their private pilot issuance date from CAIS. In these 
cases, it was unclear whether there was a data entry error, or perhaps the individual had had an accident 
while still a student. 

3. Pilots listed as receiving their instrument rating on the same day as their private pilot certificate, or 
shortly thereafter which typically would not have been expected of pilots certificated during the data 
period analyzed (these turned out to be foreign pilots who were already instrument rated, who came to 
be U.S.-certified, and rapidly completed their examinations). 

4. NTSB assigning one accident case number (the ntsb_no field) to each accident, no matter how many 
aircraft and/or pilots were aboard each aircraft. A naïve user may analyze data thinking that each row 
represents a separate accident. 

5. Difficulty identifying the pilot in command (PIC). The NTSB has a field denoting pilot (“PLT”), as 
opposed to, for instance, co-pilot, student, or check pilot. It sometimes encodes flight_type as PIC, but 
this is typically the pilot at the controls. In most cases, that pilot truly is PIC—the pilot most 
responsible for managing the accident. However, in many cases, the researcher may not know of this 
field. In other cases, (e.g. student+instructor accidents or fatal accidents), the actual PIC may not be 
documented. NTSB staff are aware of this, and it is being discussed as an issue. However, 
documentation is not available to the public regarding this situation. 

6. For what the NTSB reportedly claim to involve security reasons, at the time of this writing, FAA 
possesses only a circa-2007 copy of the NTSB accident database. Therefore, no research questions 
involving NTSB data beyond that time can be addressed without requesting a search by NTSB itself. 

7. Difficulty identifying pilots’ professions in an easily sortable way. How data have been entered into the 
database has reportedly changed several times 
a. Originally was “Yes/No,” whether the pilot was a “professional pilot.” 
b. This changed to “Y/N.” 
c. Sometimes listed as “OP” (“occupation pilot,” meaning “was a professional pilot”) or “NOP” 

(“not occupation pilot”). 
d. Sometimes listed as one of a limited number of options (e.g., ct_crew_prof, e.g., “aircraft 

mechanic,” “clergy,” “doctor/dentist,” “farmer/rancher,” “unknown”). 
e. Field is often left blank, or listed as “N/A” (not applicable). 

Issues With CAIS 
1. No user’s manual, list of frequently asked questions, or publically searchable database exists for large-

scale research purposes. Whereas NTSB makes publically available both an explanation of what their 
data fields mean and a downloadable, queriable, “cleaned” version of their database (one that makes it 
extremely difficult to identify individual pilots), CAIS has no equivalent capabilities. Large-scale 
searches must be directed to FAA AFS-760 staff. And, while those staff were most helpful, several 
complications resulted: 
a. Not knowing what data fields were available ahead of time meant having to ask. 

i. In the case of the “UniqueID” (explained below), not knowing of its existence until late in 
the search process resulted in additional labor for both the authors and AFS-760 staff. 

b. Not knowing the limitations and/or unique characteristics of certain data fields led to some 
confusion and/or trial-and-error learning. 

i. Example 1: School and Examiner data only began to be collected starting in 1995. 
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ii. Example 2: Pilot certification numbers have changed over the years. For instance, prior to 
2002, pilots’ certificate numbers were their 9-digit Social Security Number. After 2002, 
for privacy reasons, the FAA started issuing 7-digit certificate numbers, and these were 
made available as an option for pilots already certified. Meanwhile, the certificate numbers 
listed with NTSB were not changed. Consequently, the same pilot’s certificate number in 
CAIS often did not match their NTSB accident record certificate number. 

iii. There is the possibility for mismatch between what the researcher imagines the data fields 
represent, versus what they may actually represent. 

c. When problems arose with a given batch of data, AFS staff had to be consulted again. 
2. Response to requests for CAIS data can take months, particularly if another organization has a large or 

high-priority project in progress. AFS-760 has limited staff, and projects must be priority-queued. 

Issues With DIWS 

1. DIWS also had no user’s manual, list of frequently asked questions, or publically searchable database 
exists for large-scale research purposes. 

2. Again, a member of AAM-300 must be contacted to perform the search query for the researcher.  

Ultimately, a special identification number—the UniqueID—was mentioned by AFS-760 staff. This is an 
unadvertised ID number assigned to each pilot, which allows CAIS and DIWS to seamlessly match pilot 
records without having to resort to the potentially confusing pilot certification number.  

Issues Common to Databases in General 
1. Difficulty identifying a “GA flight” 

a. Different organizations define “GA” differently. For instance, one common FAA convention is 
“all N-tail-numbered aircraft not flying under Parts 121 or 135.” However, inclusion of, say, 
aircraft above 12,500 lb may vary by research organization. 

b. These distinctions may be undocumented, or only locally documented, putting the uninitiated 
researcher at risk of obtaining search data inappropriate for their research question. 

2. The AND-OR query problem 
a. If a database is searched on two or more fields with an AND query (e.g. return records containing 

A AND B), only records containing both fields will be returned. If there is a problem of any sort 
with either of the fields (e.g., missing data in one field), that record will not be returned. 

b. If a database is searched on two or more fields with an OR query (e.g. return records containing A 
OR B), records containing either field will be returned. 

c. The problem is that many researchers do not appreciate this distinction and the effect it has on the 
data that are subsequently retrieved. 

3. Missing data 
a. Blank cells. 
b. Certain kinds of data not collected either before or after a certain date. 

4. Data-entry errors (many kinds). 
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