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GENE EXPRESSION BIOMARKERS FOR NEUROBEHAVIORAL 
IMPAIRMENT FROM TOTAL SLEEP DEPRIVATION 

INTRODUCTION 

Sleep plays a key role in health, performance, and cognition (SPIEGEL et al. 1999; VAN DONGEN et 
al. 2003; FRANZEN et al. 2008; KILLGORE 2010; LAPOSKY et al. 2016). Yet sleep deficiencies, be they 
from mistimed sleep, inadequate sleep duration, or sleep disorders, are widespread (LAPOSKY et al. 
2016). Annual losses in workplace productivity within the United States are estimated at over 60 billion 
dollars from insomnia alone (KESSLER et al. 2011). Psychological and physiological impairments from 
poor sleep pose a risk of injury and even mortality in fields with safety-critical roles. Over a 12 year 
period, approximately 20% of all major accidents investigated by the National Transportation Safety 
Board, including approximately 40% of highway and 23% of aviation accidents, were associated with 
fatigue (MARCUS and ROSEKIND 2016). Fatigue can be a nebulous concept to define let alone quantify, 
although it has been described in terms of both subjective (a feeling of exhaustion, tiredness, and low 
energy) and objective (neurobehavioral or physical impairments) components (SHEN et al. 2006). Causes 
of fatigue include high workload, stress, and sleep disorders; however, for this study the focus was acute 
total sleep deprivation (SD). 

A wide range of neurobehavioral tests have demonstrated assorted forms of performance deficits from 
sleep loss, including impairment of learning and responses to feedback in decision making (KILLGORE 
2010; LIM and DINGES 2010; WHITNEY et al. 2015). Since its introduction over 30 years ago, the 
Psychomotor Vigilance Test (PVT) is one of the most commonly applied assays (DINGES and POWELL 
1985; LIM and DINGES 2008). This test assays stimulus-response time, with failure to respond within 
~500 ms recorded as a lapse. Sleep deprivation is associated with increased variability in stimulus-
response times, and more lapses, on the PVT (DORAN et al. 2001). For a real-world example, more time 
sleeping within 24 h of the duty start time was associated with faster PVT stimulus responses in pilots 
(GANDER et al. 2015).  

Besides these neurobehavioral tests, efforts have been made to identify biomarkers such as 
differentially expressed genes or metabolites affected by sleep disruption (PELLEGRINO et al. 2012; 
DAVIES et al. 2014; ARCHER and OSTER 2015; GOEL 2015; WELJIE et al. 2015; MULLINGTON et al. 
2016). Humans are known to differ in their sensitivity to sleep loss (VAN DONGEN et al. 2004; VAN 
DONGEN et al. 2012; PATANAIK et al. 2015), and recent work also has sought to identify biomarkers 
distinguishing individuals as susceptible or resistant to sleep deprivation (RUPP et al. 2013; 
ARNARDOTTIR et al. 2014; GOEL 2015; SATTERFIELD et al. 2015). Yet surprisingly little effort has been 
made to synthesize such biomarker research with results from neurobehavioral assays. Such an integrated 
approach can focus biomarker discovery on the scientifically and operationally relevant phenotype of 
impairment from SD, and may enhance fundamental understanding of how SD affects neurobehavioral 
performance at the molecular level. 

This study tests the hypothesis that gene expression responds to total SD, and can be related to 
neurobehavioral impairment measured by PVT lapses. The approach was one of biomarker discovery, 
sensu (MULLINGTON et al. 2016). Healthy human adults were recruited to the Sleep and Performance 
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Research Center at Washington State University and acclimated with two nights of Baseline sleep for 10 
h time-in-bed (TIB). Then subjects in the SD group underwent 62 h continuous wakefulness during an 
Experimental phase, followed by two Recovery nights of 10 h sleep opportunity. In contrast, individuals 
in the Control (C) group received 10 h TIB all six nights. Neurobehavioral impairment was assessed with 
the PVT, and blood was drawn for whole-transcriptome microarrays. Although gene expression may vary 
across fluid and tissue types, concordance as high as 80% has been reported between the transcriptome of 
blood and major tissues (LIEW et al. 2006; SUNDE 2010). A total of 212 genes were differentially 
expressed in response to Treatment, defined as a difference between SD and C subjects during 
the Experimental or Recovery phase. Also, the expression of 28 genes was associated with PVT lapses. 
Biological pathways and functions of the differentially expressed genes are discussed, as well as their 
utility as candidates for an operational sleep deprivation biomarker panel.   

MATERIALS AND METHODS 

Sample Collection and Neurobehavioral Data 

Study design and population demographics, including subjects’ prior sleep history, have been 
reported previously (WHITNEY et al. 2015). Ribonucleic acid extracted from blood was used to assess 
human transcriptomic changes during total SD. All individuals provided written informed consent, and 
Institutional Review Board approval was obtained at both the Civil Aerospace Medical Institute (CAMI) 
of the Federal Aviation Administration, and Washington State University (WSU).  

In brief, blood samples were obtained from 17 healthy adults (ages 22–37, 7 females). Subjects 
remained in the sleep laboratory at the Sleep and Performance Research Center (WSU, Spokane, WA) for 
six consecutive nights. A two-night Baseline phase for acclimation was followed by a two-night 
Experimental phase, and the study concluded with two Recovery nights. During both the Baseline and 
Recovery phases all subjects received 10 h TIB each night (22:00–08:00 h). For the Experimental phase, 
11 randomly selected subjects underwent SD, consisting of 62 h of continued wakefulness. The remaining 
6 C subjects received the usual 10 h TIB nightly. Blood samples were collected with an intravenous 
catheter every 4 h during time awake on days two, four, and six (Fig. 1), corresponding to one day each 
during the Baseline, Experimental, and Recovery phases. At each of the 12 timepoints (Fig. 1, Suppl. 
Table 1), 2.5 mL blood was collected in a PAXgeneTM Blood RNA tube (PN 762165, PreAnalytiX 
GmbH, Hombrechtikon CH) and stored at approximately -20°C overnight. The following day, tubes were 
transferred to -80°C until shipment on dry ice to the CAMI Functional Genomics laboratory, where they 
were immediately returned to -80°C until RNA extraction. Of 204 possible samples (12 timepoints, 17 
subjects), five blood draws were unsuccessful, resulting in 199 RNA extractions. Blood was not able to be 
drawn from two SD subjects at 08:00 h and a third SD subject at 20:00 h during the second day 
(Baseline), and from a fourth SD subject at 16:00 h on day six (Recovery). Likewise phlebotomists were 
unable to collect blood from one C subject at 16:00 h on day four (Suppl. Table 1). 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable1_nopvt.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable1_nopvt.xls
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable1_nopvt.xlsx
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Figure 1. Overview of the study design, consisting of seven days, six nights in the sleep laboratory. During the 
Baseline and Recovery phases, all 17 subjects received 10 h TIB each night. During the Experimental phase, the 11 
SD persons underwent a 62 h period of continued wakefulness, whereas the 6 C subjects continued to have 10 h TIB 
each night. Vertical lines indicate the 12 timepoints with blood collection and PVT data as analyzed here. 

As previously described (WHITNEY et al. 2015), subjects were presented with the PVT for 10 min at 2 
h intervals during scheduled wakefulness. However, for the present report only the test every 4th h 
corresponding to timing of blood draws was utilized (Fig. 1). Subjects were asked to immediately press a 
button upon observing a visual cue on a computer screen, which appeared at random 2–10 s intervals. 
Stimulus-response times >500 ms were recorded as a lapse, and data were recorded as the number of 
lapses per test bout. Significant differences in PVT over time and between conditions were tested with 
generalized linear models using Poisson distribution and log link with PVT as the response variable, and 
progressively adding as predictors Treatment (SD or C), Phase, Time of Day, and their interaction terms. 
In all models a random intercept was included for subject; also, a random term for observation was 
included to correct for overdispersion as in (ELSTON et al. 2001). Models with different predictors were 
compared using P-values from Maximum Likelihood tests, as well as Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC) scores. Models were constructed in R v. 3.2.1 using the glmer 
function in the lme4 v. 1.1-11 package (BATES et al. 2015), with the “nlminb” optimizer. 

RNA Isolation 

Samples in PAXgeneTM tubes were thawed at room temperature with slow rotation overnight. Tubes 
were centrifuged 10 min at 4000 x g in a swinging bucket rotor. The pellet was washed by resuspension in 
4 mL RNase-free water and centrifugation for 10 min at 4000 x g. Total RNA from the pellet was isolated 
with a QIAcube robotic workstation (PN9001292 Qiagen Inc., Valencia CA), using reagents from the 
PAXgeneTM Blood miRNA Kit (PN763134, PreAnalytiX) and the directions found in Appendix C of the 
accompanying Kit Handbook, version 05/2009. The QIAcube protocols PAXgeneTM Blood miRNA Part 
A and Part B (www.qiagen.com/MyQIAcube) were used. Following isolation, aliquots were used for 
quantification on a NanoDrop 1000 Spectrophotometer (ThermoFisher), and quality assessment on an 
Agilent 2100 Bioanalyzer® with the RNA 6000 Nano kit (Agilent Technologies, PN 5067-1511).  
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Microarray Probe Preparation and Hybridization 

Total RNA samples were randomized and aliquots were normalized to 20 ng/µl. Fifty nanograms 
of each sample were spiked with 2 µL of 3’ amplification controls (Affymetrix, PN 900454). 
Reverse transcription was performed with the Ovation Pico WTA System V2 kit (PN3302, NuGEN 
Inc., San Carlos, USA) for generation of the amplified cDNA product. Concentration of the amplified 
cDNA was determined with the NanoDrop as above. Fragmentation and biotin labeling was 
performed on 5 µg amplification product using the Encore® Biotin module (PN4200, NuGEN 
Inc.), according to the manufacturer’s protocol.  

Hybridization cocktail including Affymetrix hybridization controls (PN900454) was 
prepared according to Appendix VI of the manual NuGEN Encore® Biotin Module for Affymetrix 
169 format chips. GeneChip Human Gene 1.0 ST arrays (Affymetrix PN902113) were prewet with 90 
µL prewarmed prehybridization solution for 10 min at 45°C with 60 rpm. The prehybridization 
solution was replaced with 90 µL of hybridization cocktail followed by 18 h incubation at 45°C with 
60 rpm. The Affymetrix Wash and Stain kit reagents (PN900720-C) and fluidics protocol 
FS450-00007 were used with the GeneChip Fluidics Station 450 (PN 00-0079, Affymetrix) for 
post-hybridization chip processing and scanned on an Affymetrix Scanner (PN00-0073) with the G7 
upgrade.  

Differential Gene Expression: Treatment and PVT effect 

Transcript Cluster-level expression values were derived by background correction, 
quantile normalization, and median polish summarization with the RMA algorithm (IRIZARRY et al. 
2003) in the R/oligo package v. 1.32.0 (CARVALHO and IRIZARRY 2010). Data were filtered for low 
expression, only retaining a Transcript Cluster if at least 6 samples had log2 expression >6, 
corresponding to the median (and mean) expression of the antigenomic Transcript Clusters. Array 
data quality was assessed with hierarchical clustering and tools in R/
arrayQualityMetrics v. 3.24.0 (KAUFFMANN et al. 2009). Six arrays from six different SD subjects 
were considered outliers: one at noon and one at 20:00 h on day four (Experimental), one at noon and 
one at 20:00 h on day six (Recovery), and two at 16:00 h on day six. In tests of differential gene 
expression, outliers were included but de-emphasized using the internal array weighting function of 
limma (RITCHIE et al. 2015). For other analyses without an internal weighting function (WGCNA, 
MFuzz, and RIF; see below), a separate RMA expression file was created omitting these six outliers 
altogether.  

Tests for differential expression were conducted for biomarker discovery with R/limma v. 
3.24.15 using linear models (RITCHIE et al. 2015). All models included array weights, a random effect 
for subject (duplicateCorrelation function), and a term to account for differences attributable to Time of 
Day. Visual examination of the PVT data suggested that three of the 11 SD subjects were fatigue 
resistant, at least at the neurobehavioral level (Suppl. Fig. 1), and these were excluded from the 
RMA expression file for Treatment effect analysis. Thus, the Treatment effect analysis 
investigated the difference in gene expression between 8 SD and 6 C subjects at Baseline, at 
Experimental, and at the Recovery phase. The Treatment list was defined as Transcript Clusters with a 
significant difference between C and SD persons at the Experimental or Recovery phase (FDR <0.05), 
but not at Baseline. Plots of Transcript Clusters were reviewed to ensure mean log2 expression ±1 SE 
overlapped between C and SD subjects at all four Baseline timepoints, when no differences are 
expected. If plots showed separation in expression between C and SD at Baseline, the Transcript Cluster 
was discarded from the final Treatment list to reduce false positive discoveries. 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig1.pdf
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Similarly, linear models were applied in limma to test for a significant relation of PVT lapses to 
gene expression. Here, data for all 11 SD and 6 C subjects were included. Besides the subject effect 
and PVT lapses, the model contained terms for Treatment (SD or C) and Time of Day. Because 
discovering a biomarker panel for neurobehavioral impairment from sleep deprivation was the 
primary aim, it was important to avoid missing candidate biomarkers in this first screening study. 
Hence the threshold for significance was relaxed from FDR <0.05 to FDR <0.10. As before, expression 
was plotted for SD and C subjects, and Transcript Clusters were eliminated from the PVT list if the 
mean log2 expression ±1 SE showed separation at any Baseline timepoint.  

Co-expression and Temporal Networks 

Weighted Gene Co-expression Network Analysis was performed using R/WGCNA v. 1.47 and 
data from all 17 subjects. This approach has been described in detail by Langfelder and Horvath 
(2008). Essentially the analysis serves to group genes based on similarity of expression across samples 
(n=193; 199 successful blood draws minus 6 outliers). All Transcript Clusters passing the low-
expression filter were included, not just those differentially expressed, for a complementary approach to 
the limma models above. Signed networks were constructed, allowing for positive or inverse 
relationships based on Pearson correlations among genes. Using internal functions plotting scale free 
topology, a soft power threshold of 13 was selected, and the minimum number of Transcript Clusters 
per group was set to 30. Each group of co-expressed Transcript Clusters was termed a module, which 
the package designated by a color. Pearson correlations were computed separately between each 
module’s eigengene and three variables: PVT lapses, Treatment, and Time of Day. The eigengene was 
a representative metric of the expression profile of Transcript Clusters in the module (LANGFELDER 
and HORVATH 2008). The WGCNA software also allowed identification of the top hub Transcript 
Cluster for each module, namely, the most highly connected Transcript Cluster within the 
module. Here, connectivity was based on the correlation of expression among genes (LANGFELDER 
and HORVATH 2008). 

A second temporal clustering approach was performed using R/Mfuzz v. 2.28.0 (KUMAR and 
FUTSCHIK 2007). This analysis was not designed to test for treatment differences, but rather excels 
at portraying time series. Hence the three fatigue resistant individuals and the Controls were omitted, 
and Mfuzz was used to cluster and plot the mean log2 expression of the 8 SD subjects across 
the 12 timepoints. Expression values for the differentially expressed Treatment effect Transcript 
Clusters were z-transformed and then clustered across timepoints using fuzzy c-means clustering. An 
internal function was used to select the fuzzification parameter (m=1.33). A combination of internal 
functions and plotting was used to decide on the number of clusters, which was set to three. The same 
clustering strategy was employed on the Transcript Clusters associated with PVT lapses, again based 
on the average data from the 8 SD subjects. The fuzzification parameter was m=1.76, again with 
creation of three clusters. 

Transcription Factor Regulators 

We assigned Regulatory Impact Factor (RIF) scores to known human transcription factors as a means 
of ranking potential regulators of the differentially expressed genes. This approach involved a differential 
co-expression analysis, as described by Reverter et al. (2010). In synopsis, transcription factors were 
separately correlated to all differentially expressed genes in each of two conditions. Then the difference 
between the correlation of the transcription factor to gene expression in the first condition, and its 
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correlation to gene expression in the second condition, was computed and squared. This difference was 
next weighted by the average abundance of the differentially expressed gene across all samples, and its 
difference in expression between the two conditions. The final value was converted to a z-score and 
reported for each transcription factor to rank their regulatory potential. Based on the differences in 
correlation and in expression between the two conditions (here, C and SD), the RIF z-scores were either 
positive or negative. Larger absolute values of the z-scores were interpreted as stronger evidence for a 
regulatory role. 

Three input sets of data were necessary for running this analysis: (1) a list of transcription factors, (2) 
a list of differentially expressed genes (Transcript Clusters), and (3) the expression values of the 
transcription factors and differentially expressed genes in each condition. The list of transcription factors 
(1) was created by inputting a list of gene symbols for all human Transcription Factors in QIAGEN
BIOBASE TRANSFAC v. 2015.4 into the Affymetrix NetAffxTM tool (LIU et al. 2003) and exporting the
associated list of Transcript Clusters. This list of transcription factor Transcript Clusters was reduced to
those for which there was data after filtering for low expression levels (see above). For the second item
two lists of differentially expressed genes were used running the RIF analysis twice. In one run the
Treatment effect Transcript Clusters were used (2a), and in the other run the PVT effect Transcript
Clusters were employed (2b) as the differentially expressed gene list. Finally, averages were computed for
each of the 12 timepoints for C and for SD individuals, and these 12 values served as the input expression
data (3) for each of the two conditions (C, SD). It was necessary computationally to have the same
number of expression data points for both conditions, making it impossible to use the raw data for the 6 C
vs. 8 SD subjects (fatigue resistant subjects were omitted). With these data in hand, the script published in
the supplemental material of Uyhelji et al. (2016) was run to compute RIF z-scores, with minor
modifications. Namely, Uyhelji et al. (2016) ran a Spearman correlation analysis on RNA-Seq discrete
counts, whereas here Pearson correlations were applied to the log-transformed microarray data.

In addition to the RIF differential co-expression analysis, the BIOBASE F-match tool 
(http://www.biobase-international.com/) was utilized to search for regulatory transcription factors based 
on the promoter sequence of differentially expressed genes. Analysis was based on the BIOBASE 
TRANSFAC® v. 2015.4 vertebrate non-redundant profile (MATYS et al. 2006), with default settings 
modified to minSum for optimization of both false positive and false negative errors, and a P-value 
threshold of 0.05. 

We scanned for over-represented binding sites in both Treatment effect and PVT Transcript Clusters. 
For the Treatment effect, a background set was randomly selected from Transcript Clusters with raw P-
values >0.10 (FDR>0.337) in the limma differential expression analysis between C and SD subjects at the 
Experimental phase. For the PVT effect, the background set was randomly selected from Transcript 
Clusters with raw P-values >0.10 (FDR>0.513) for PVT lapses. Each background list contained the same 
number of Transcript Clusters as the foreground list (Treatment or PVT effect Transcript Clusters), per 
the manufacturer’s recommendations. Ten background lists were created for each foreground set, and 
only transcription factors appearing on at least nine iterations of F-match were considered for further 
analysis.  

Functional Enrichment and Pathway Analysis 

Affymetrix’s online tool NetAffx™ (LIU et al. 2003) was used to annotate gene lists, with emphasis 
on the first annotation provided for genes with mixed hybridization targets per Affymetrix’s 
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recommendation (pers. comm.). Also, the DAVID v. 6.7 bioinformatics tool (HUANG et al. 2008) was 
used to characterize functional enrichment. For these, Transcript Clusters in the list of interest served as 
the foreground input, with all Transcript Clusters in the corresponding RMA expression set passing the 
low-expression filter as the background. As suggested by TIMMONS et al. (2015), such user-defined 
backgrounds can be important to reduce bias towards tissue-specific expression (e.g., detection of 
pathways found in blood due to using blood as the RNA source). Analysis was focused on DAVID 
functional clusters with enrichment scores >1.3, corresponding to P <0.05. 

The Ingenuity Pathway Analysis® (IPA®, QIAGEN Redwood City, 
http://www.qiagen.com/ingenuity) Core Analysis tool was used to explore molecular pathways and 
networks based on previously published interactions among genes. Parameters used included 
consideration of both direct and indirect relationships, exclusion of endogenous chemicals, inclusion of 
Causal Network analysis, use of Ingenuity expert and Ingenuity supported third party information from 
experimentally observed data (vs. predictions), and restriction of species to mammals (human, mouse, 
rat). The foreground in these IPA® runs consisted of the gene list of interest (e.g., Treatment or PVT 
effect Transcript Clusters, converted internally by IPA® to genes), and as with DAVID, the background 
was all microarray genes passing the log2 >6 low-expression threshold in at least six samples. Preliminary 
runs using the default background of all genes represented in the HuGene 1.0 ST microarray suggested 
that these user-defined backgrounds typically were more conservative in yielding results.  

Because PVT lapses were ordinal rather than binary, fold changes for the PVT effect could not be 
computed directly to portray the direction of expression. Instead, the log2 fold change values were used 
for SD relative to C subjects (omitting the 3 fatigue resistant persons) at the Experimental phase, taken 
from the Treatment effect analysis. Based on the sign of the correlation coefficient of a Pearson 
correlation between PVT lapses and gene expression, it was confirmed that the direction of expression 
indicated by the Treatment effect fold change reflected the direction relative to PVT. That is, Transcript 
Clusters with a positive Pearson correlation between PVT and gene expression (higher expression with 
more PVT lapses) also showed a positive fold change for the Treatment effect (higher expression in SD 
than C subjects). This information was used by IPA to depict whether a given gene was up-regulated or 
down-regulated, and whether connected molecules and biological functions were activated or inhibited. 
Causal Network pathways of interest were reviewed for connections between differentially expressed 
genes and upstream regulatory molecules (KRÄMER et al. 2014). Fisher’s exact tests were used to check 
for the presence of a greater number of differentially expressed genes related to the Causal Network than 
would be expected due to chance. 

MicroRNA Quantitative PCR 

A 300 ng aliquot of total RNA from each of the 199 samples was used for the analysis of microRNA 
(miRNA) expression with 30 TaqMan® assays (Life Technologies, Grand Island NY) according to the 
recommendations from Fluidigm® for miRNA analysis on the BioMark system (MicroRNA Real-Time 
PCR Using Dynamic Array IFCs, PN 100-1616 B2 Fluidigm Corp., South San Francisco, CA). The 
Taqman microRNA Reverse Transcription kit (PN 1312165, Life Technologies) and KAPA Probe Fast 
qPCR Kit Master Mix Universal (PN KR0397-v5.13  KAPABiosystems, Wilmington, MA) were used in 
a modified protocol obtained from Fluidigm (PN 100-1616 B2 Fluidigm Corporation, Amsterdam) with 
custom Reverse Transcription and preamplification primer pool prepared as directed (PN 4465407 rev C, 
Life Technologies). Following a 17 cycle preampflication, the product was diluted 1:10 with 10mM Tris 
pH8.0, 0.1mM EDTA. The qPCR amplification reaction was prepared according to the manufacturer’s 
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96x96 protocol (#68000130 Fluidigm) using KAPA Probe Fast qPCR Kit Master Mix Universal (PN 
KR0397-v5.13, KAPA Biosystems ) on Biomark IFC Controller and HD instruments (Fluidigm® Corp.).   

Initial analysis of the miRNA plate assays was done with settings as recommended (Fluidgm Real-
Time PCR Analysis software, ver. 4.1.2), 0.65 quality threshold, Linear (Derivative) baseline correction 
and Auto (Global) Ct threshold method. Efficiencies for each gene were determined via duplicate 
standard curves run on the same plate. The miRNAs MIRLET7A and MIRLET7D were chosen as 
Normalizers using GeNorm and Normfinder. Finally, normalized gene expression values were analyzed 
via linear mixed-effects models with R package nlme v. 3.1-126, using marginal Type III sum of squares. 
Models predicted expression of each miRNA as a function of PVT lapses, Treatment (SD or C), and Time 
of Day (encoded as factor), including a random intercept for subject.  

RESULTS 

Generalized linear mixed-effects models of PVT scores for all 17 subjects with maximum likelihood 
tests revealed a significant effect of the SD Treatment on PVT lapses (Fig. 2, Suppl. Table 2). 
Specifically, model selection by the lowest AIC and BIC scores preferred models including a Treatment 
by Phase interaction, where Phase distinguishes Baseline, Experimental, and Recovery periods (Suppl. 
Table 2).  

Figure 2.Mean (± 1 SE) PVT lapses of 11 SD and 6 C subjects during three of the seven consecutive study 
days, consisting of one day each during the Baseline, Experimental, and Recovery phase. 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable2.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable2.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable2.xls
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Although fatigue resistance in a larger sample size may be best represented by a continuum, here 
inspection of the PVT data suggested that three SD subjects were impacted less by total SD and they were 
categorized as fatigue resistant (Suppl. Fig. 1). It was hypothesized that this inter-individual variability 
could impede detection of a gene expression Treatment effect between C and SD persons, as the fatigue 
resistant subjects are outliers to the average SD response, at least in terms of PVT lapses. Thus, to test for 
genes differentially expressed respective to Treatment, the three fatigue subjects were omitted and 
comparison made between the 6 C and the remaining 8 SD persons. A brief comparison was made by 
running this model of a Treatment effect including the fatigue resistant individuals. About 90% of genes 
different between SD and C subjects at the Experimental phase in models with the fatigue resistant 
subjects also were significant in models without these subjects at FDR <0.05 (data not shown). However, 
models without these three subjects detected over three times as many differentially expressed Transcript 
Clusters. Some of these additional genes were known from literature review to respond to sleep levels 
such as Interleukin 1B (IL1B) (KRUEGER 2008; DA COSTA SOUZA and RIBEIRO 2015). Hence for 
biomarker discovery, models without the fatigue resistant subjects were considered more comprehensive 
and potentially more accurate indicators of a Treatment response. To discover biomarkers associated with 
PVT lapses, all 17 subjects were included because PVT lapses inherently provide a means of 
incorporating inter-individual variability into the statistical models.  

Differential Gene Expression: Treatment and PVT effect 

At the Treatment level, 225 Transcript Clusters, corresponding to 212 genes with annotated gene 
symbols or mRNA assignments (Suppl. Table 3), exhibited a significant difference between SD and C 
subjects in the Experimental but not Baseline phase. Most (~88%) were down-regulated in SD persons. 
Two Transcript Clusters representing Cathelicidin Antimicrobial Peptide (CAMP, FDR =3.56E-03, log2 
fold change of -0.57) and Defensin, Alpha 4, Corticostatin (DEFA4, FDR =0.033, log2 fold change of -
1.00) also were differentially expressed in the Recovery phase. No Transcript Clusters were significantly 
different in the Recovery phase but not the Experimental phase.  

Thirty-four Transcript Clusters, representing 28 annotated genes (Suppl. Table 4), were associated 
with PVT lapses. There were 29 Transcript Clusters down-regulated and five up-regulated as PVT lapses 
increased and sleep was deprived. One of the up-regulated Transcript Clusters was Outer Dense Fiber Of 
Sperm Tails 2-Like (ODF2L), and the remaining four belonged to the Speedy/RINGO (SPDY) cell cycle 
regulator gene family. There were 15 Transcript Clusters corresponding to 13 distinct genes in the PVT 
list not found in the Treatment list (Suppl. Table 4), including EF-Hand Domain Family, Member D2 
(EFHD2); Ankyrin Domain Family (POTE); Growth Factor Receptor-Bound Protein 2 (GRB2); 
Potassium Inwardly-Rectifying Channel, Subfamily J, Member 15 (KCNJ15); and Flotillin 1 (FLOT1). To 
verify this result was not simply a reflection of the Treatment dataset excluding the fatigue resistant 
individuals while the PVT analysis included them, the Treatment analysis was run again with all 17 
subjects (data not shown). During the Experimental phase, the lowest FDR for the difference between SD 
and C subjects in these 15 Transcript Clusters was 0.35, suggesting that the conclusion was robust to 
inclusion or exclusion of these subjects. 

Co-expression and Temporal Networks 

A total of 23 WGCNA modules of co-expressed Transcript Clusters were constructed, along with a 
group of three unassociated genes (Grey “module”). Each module was tested for an association with the 
key variables (Time of Day, Treatment, PVT). Some modules correlated with Time of Day, but analyses 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig1.pdf
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable3.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable4.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable4.xlsx
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focused on the association of modules with PVT. At a Bonferroni-corrected Type I error threshold of 
0.0167, the White and Darkturquoise modules were significantly correlated with PVT lapses (Fig. 
3, Suppl. Table 5), and Darkturquoise also was significantly correlated with Treatment. The genes 
represented in the Darkturquoise module primarily were involved in the immune response, with a large 
number of immunoglobulins including its top hub Transcript Cluster Immunoglobulin Kappa Constant 
(IGKC) (Table 1). In the White module, several Transcript Clusters represented members of the SPDY 
gene family, including the top hub Transcript Cluster (Table 1).  

 

 
Figure 3. Matrix of Pearson correlations between WGCNA co-expression modules (rows), and each of three 
variables (columns): time of day, PVT lapses, and Treatment. Positive correlations are shown in red, and occur when 
gene expression was higher in samples at later times of day, in samples with higher PVT lapses, and in samples from 
SD relative to C subjects. Negative correlations are blue. Correlation coefficients are depicted for the correlation of 
each module and variable, with P-values in parentheses. 
 

  

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable5.xlsx
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Table 1. Content of WGCNA modules, including the top hub gene in each module.  
PVT Treatment Total 

Transcript Transcript Transcript Hub Transcript Hub Gene 
  Clusters Clusters Clusters Cluster Symbol 

lightgreen 0 0 83 8031277 KIR2DS4 
royalblue 0 8 69 7940287 MS4A1 
greenyellow 0 5 980 7972069 MYCBP2 
lightcyan 0 0 125 7994559 LOC101929910 
pink 0 2 395 7987405 RASGRP1 
black 1 3 1090 7974483 KTN1 
blue 0 3 957 8127526 RPL39P5 
green 0 4 540 8086148 RPL29P11 
darkgrey 0 0 51 8019631 RNU2-1 
darkturquoise 0 0 54 8043459 IGKC 
purple 0 0 345 7995320 --- 
darkred 0 0 60 8133896 --- 
lightyellow 0 0 74 8089038 --- 
cyan 0 0 581 8030470 AP2A1 
orange 0 0 49 8149927 CLU 
grey60 0 3 125 8040080 RSAD2 
darkorange 0 1 43 8019716 LOC101060376 
darkgreen 0 1 58 7919412 NBPF19 
white 4 6 39 8133600 SPDYE9P 
brown 7 56 1060 7986010 IQGAP1 
turquoise 21 127 1420 7960518 TNFRSF1A 
midnightblue 1 5 160 7989037 CCPG1 
skyblue 0 0 36 7896742 LOC101928706 

 
Temporal clustering of the Treatment effect Transcript Clusters in SD subjects with Mfuzz resulted in 

a single group of 26 Transcript Clusters up-regulated during the Experimental phase (Mfuzz Treatment 
Group 2), whereas Transcript Clusters in the other two Mfuzz groups were down-regulated (Fig. 
4, Suppl. Table 3). Down-regulated Mfuzz Treatment Group 1 contained 104 Transcript Clusters, and 
DAVID analysis revealed functional enrichment of ion binding and cell adhesion. Genes represented in 
Mfuzz Treatment Group 1 included Argonaute RISC Catalytic Component 4 (AGO4), Prostaglandin-
Endoperoxide Synthase 2 (PTGS2), Casein Kinase 1, Alpha 1-Like CSNK1A1L, Protein Kinase C, Beta 
(PRKCB), Lipopolysaccharide-Induced TNF Factor  (LITAF), IL1B, Eukaryotic Translation Initiation 
Factor 4E Family Member 3 (EIF4E3), and Glycogen Synthase Kinase 3 Beta (GSK3B). The up-regulated 
Mfuzz Treatment Group 2 was smaller and lacked significantly enriched functional clusters in DAVID; 
members included Transcript Clusters associated with B cell signaling, and genes in the SPDY family. 
Down-regulated Mfuzz Treatment Group 3 contained 94 Transcript Clusters, with functional enrichment 
of immunoglobulins, cell motility, and the inflammatory response. Among the genes in this group were 
Basic Helix-Loop-Helix Transcription Factor (HIF1A), Chemokine (C-X-C motif) Receptor 2 (CXCR2), 
Solute Carrier Family 11 (Proton-Coupled Divalent Metal Ion Transporter), Member 1 (SLC11A1), 
Chemokine (C-X-C motif) Receptor 1 (CXCR1), Interleukin 17 Receptor A (IL17A), Cytoplasmic 
Polyadenylation Element Binding Protein 4 (CPEB4), and Immediate Early Response 3 (IER3).  

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable3.xlsx
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Figure 4. Temporal expression of microarray Transcript Clusters significant for the Treatment effect (lines, colored by 
strength of Mfuzz group membership). Values represent normalized expression in SD subjects during three of the 
seven consecutive study days, consisting of one day each during the Baseline, Experimental, and Recovery phase. 

Although members of both Mfuzz Treatment Groups 1 and 3 exhibited down-regulation in SD 
persons during the Experimental phase, the temporal patterns differed slightly. Mfuzz Treatment Group 1 
showed highest expression at midday in Recovery and a weak trend towards highest expression midday in 
Baseline, which was disrupted by down-regulation in the Experimental phase. Overall, Mfuzz Treatment 
Group 3 Transcript Clusters had their highest expression during Baseline at 08:00 h and decreased 
expression to 20:00 h. Not only was this pattern disrupted during the Experimental phase similar to Mfuzz 
Treatment Group 1, but also there was a delay in the maximum expression until 12:00 h in the Recovery 
phase.  

When Transcript Clusters associated with PVT lapses were temporally clustered, there again were 
two Mfuzz down-regulated groups and one up-regulated group during the Experimental phase (Fig. 
5, Suppl. Table 4). For down-regulated Mfuzz PVT Group 1 with 15 Transcript Clusters, cell motility 
was the only significantly enriched functional cluster found in DAVID. Members of Mfuzz PVT Group 1 
included Aquaporin 9 (AQP9), chemokine receptors CXCR1 and CXCR2, and HIF1A. In down-regulated 
Mfuzz PVT Group 2 with 14 Transcript Clusters, there was one significantly enriched functional group, 
namely ion transport. Included in Mfuzz PVT Cluster 2 were LITAF, KCNJ15, and FLOT1. There were 
no significant enrichment terms for Mfuzz PVT Group 3, which consisted of four Transcript Clusters for 
the SPDY family (Fig. 5, red and pink lines), plus OD2FL. Similar to Group 3 of the Mfuzz Treatment 
results, the Mfuzz PVT Group 1 showed a pattern of decreasing expression from 08:00 to 20:00 at 
Baseline that shifted to overall low expression in the Experimental phase, with continuing distortion 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable4.xlsx
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during the Recovery phase. The Mfuzz PVT Group 2 was roughly similar in expression pattern to Mfuzz 
Treatment Group 1 in having a circadian maximum midday in the Baseline and Recovery phases, which 
was depressed during the Experimental phase. Mfuzz PVT Group 3 exhibited a similar expression pattern 
to Treatment Group 2, with up-regulation during the Experimental phase. 

Figure 5. Temporal expression of microarray Transcript Clusters significant for the PVT effect (lines, colored by 
strength of Mfuzz group membership as in Fig. 4). Values represent normalized expression in SD subjects during 
three of the seven consecutive study days, consisting of one day each during the Baseline, Experimental, and 
Recovery phase. 
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Transcription Factor Regulators 

RIF z-scores were used to rank human transcription factors as potential regulators for the Transcript 
Clusters associated with Treatment and PVT. For the Treatment list, no transcription factors had z-scores 
>2, whereas 41 had z-scores <-2 (Suppl. Table 6). The smallest RIF value corresponded to the ELK3, 
ETS-domain protein - SRF accessory protein 2 (ELK3), with RIF z-score =-7.40. From the PVT list, 7 
Transcript Clusters had z-scores >2 including the basic helix-loop-helix family member 40 (BHLHE40, 
RIF z-score =2.64), and 25 had z-scores <-2 (Suppl. Table 7). The largest absolute value of the RIF score 
was for ELK3, with RIF z-score =-6.36.  

To further characterize potential regulators of the response to sleep deprivation, the BIOBASE F-
match algorithm was used to assess potential transcription factor binding sites in the promoters of 
Transcript Clusters from the Treatment and PVT lists. Seven transcription factor matrices were predicted 
to regulate genes that respond to Treatment: c-Myb, E2A, Ets, GKLF, E-box, GLI, and myogenin. Only 
Hic1 met the screening criteria for the PVT list.  

Comparing the results from RIF with F-match, two matrices, Ets and E-box, were identified in F-
match for the Treatment list, and associated with transcription factors having an RIF z-score >2 or <-2. 
The Ets and E-box binding matrices were found in many Treatment genes by F-match, and among 
transcription factors known to bind these matrices were four genes with high RIF z-scores: Upstream 
Transcription Factor 1 (USF1) with an E-box binding site; Transcription Factor 4 (TCF4) with an E-box 
binding site; GA Binding Protein Transcription Factor, Alpha Subunit 60kDa (GABPA) with an Ets 
binding site; and ELK3 with an Ets binding site (Table 2). Three of these transcription factors, ELK3, 
TCF4, and USF1, had an RIF z-score <-2 in the PVT list; however, F-match PVT results only identified 
the Ets matrix as over-represented against three background sets, and the E-box motif against two 
backgrounds. Expression levels of the gene Hypermethylated in Cancer 1 (HIC1) did not meet our low-
expression filter, and thus it was excluded from the RIF analysis. 

 

Table 2. Transcript clusters with evidence of regulatory roles from RIF and Biobase F-match analysis. F-match over-
representation was reported as the number of times the binding matrix was over-represented out of 10 runs. 

Transcript 
Cluster 

Treatment 
RIF z-score 

PVT RIF 
z-score 

Gene 
Symbol 

Binding 
Matrix 

Treatment F-
match over-

representation 

PVT F-match 
over-

representation 
7957665 -7.40 -6.36 ELK3 Ets 10 3 
8133030 -3.01 -0.82 GABPA Ets 10 3 
8023415 -2.07 -2.13 TCF4 E-box 9 2 
7921738 -5.44 -3.35 USF1 E-box 9 2 

 

Functional Enrichment and Pathway Analysis 

Functional enrichment in DAVID was similar for both the Treatment and PVT effects, albeit with 
fewer findings for the much smaller PVT list (Tables 3-4). Several enriched functional categories were 
related to the immune response and motility, including immunoglobulins, components of the 
inflammatory response, cell adhesion, and calcium ion binding. There were no significantly enriched 
functional clusters for the up-regulated Transcript Clusters of the Treatment list (Mfuzz Treatment Group 
2, Fig. 4) or PVT list (Mfuzz PVT Group 3, Fig. 5), likely due to the small total number of up-regulated 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable6.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable7.xlsx
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Transcript Clusters. Most Transcript Clusters were down-regulated. In support of the results from 
DAVID, the IPA® Core Analysis of the Treatment list predicted inhibition of immune cell trafficking, 
cell movement, inflammatory response, and cell-to-cell trafficking and signaling (Suppl. Table 8). 

Table 3. Functional enrichment for DAVID clusters with scores >1.3 (corresponding to P<0.05) from analysis of the 
Treatment effect list. 

Cluster 
Number 

Enrichment 
Score 

Number of 
genes Description 

1 4.43 99 membrane 
2 2.82 14 immunoglobulin 
3 2.74 16 cell adhesion 
4 2.34 38 cell motility; inflammatory response 
5 2.24 13 cell junction 
6 2.03 12 coagulation 
7 1.96 21 cell fraction 
8 1.76 3 metal ion-binding site:Calcium 
9 1.44 15 vesicle 

10 1.43 3 sushi; complement control module 
11 1.33 13 lipoprotein 

Table 4. Functional enrichment for DAVID clusters with scores >1.3 (corresponding to P<0.05) from analysis of the 
PVT effect list.

Cluster 
Number Enrichment Score 

Number of 
genes Description 

1 1.65 9 cell motility; inflammatory response 
2 1.37 9 vesicle-mediated transport; intracellular signaling cascade 
3 1.37 19 membrane 
4 1.35 5 calcium-binding EF-hand 

The 28 genes associated with PVT lapses were part of multiple upstream Causal Networks in IPA®, 
25 of which were connected to at least 10 of the differentially expressed PVT genes. One had similarity to 
a network from the Treatment list in that the Bradykinin Receptor (BDKR) was a master regulator in both 
(Suppl. Fig. 2, Network B). This network was significantly enriched for both the Treatment (P =8.75E-
04) and PVT analysis (P =4.22E-03). Both Treatment and PVT Causal Networks provided evidence for
purinergic activity, but with different purine type receptors as the master regulator: P2RX4 for Treatment,
(P =9.16E-04) and P2RX7 for PVT (P =2.46E-03) (Suppl. Fig. 3, Network P). A PVT Causal Network of
interest (P =1.72E-03) that contained evidence of ion channel activity had adenylate cyclase (ADCY) as
its master regulator (Fig 6, Network A). Also, a PVT Causal Network pathway with the master regulator
DNAJ (Suppl. Fig. 4, Network D) predicted up-regulation of several heat shock proteins including
DNAJ, HSP70, and HSP90 (P =4.09E-03). However, there were no corresponding Treatment Causal
Networks with ADCY or DNAJ as the master regulator.

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable8.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig2.pdf
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig3.pdf
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig4.pdf
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MicroRNA Quanitative PCR 

None of the tested miRNAs were significantly associated with Treatment. However, three were 
significantly related to PVT lapses (FDR<0.05): microRNA 152 (MIR152), microRNA 27b (MIR27B), and 
microRNA 24 (MIR24) (Suppl. Table 9).  

DISCUSSION 

This report represents one of the first studies of gene expression biomarkers for impaired 
neurobehavioral performance due to sleep deprivation. The lack of biomarkers for the consequences of 
sleep loss was highlighted at a recent workshop on sleep biomarker discovery (MULLINGTON et al. 2016). 
Some of the difficulty identifying biomarkers for sleep deprivation hitherto may have been caused by the 
large inter-individual variability in responses to sleep loss. In particular, the phenomenon of fatigue 
resistance has been recognized for over a decade (VAN DONGEN et al. 2004). To date no reliable method 
to identify resistant individuals prior to SD exposure has been developed. In the present study, inspection 
of PVT lapses (Suppl. Fig. 1) identified three out of 11 SD subjects as fatigue resistant. By testing for the 
relationship of gene expression in blood to PVT lapses that encompass some of this variability, additional 
biomarkers were found that were not identified by assessment of a simple Treatment effect. Of course the 
same was true in reverse, as we identified 212 Treatment effect genes in blood (Suppl. Table 3) and a 
mere 28 genes associated with PVT lapses (Suppl. Table 4). Detecting a relationship of gene expression 
with PVT lapses may be more difficult, considering the added complexity and perhaps narrower suite of 
associated genes for neurobehavioral traits. 

While identifying genes associated with a sleep loss Treatment has value, biomarkers for functional 
impairment are more relevant to assessing fitness for duty in safety-critical roles and may aid fundamental 
understanding of the relationship between sleep and cognition. Shifting the focus from biomarkers for 
sleep loss over time to biomarkers for neurobehavioral impairment from SD strengthens characterization 
of the molecular basis of the phenotype, and also emphasizes operational needs. A key next step will be 
determining the neurobehavioral or other phenotypic metrics that best summarize fitness for duty; 
answers may vary depending on the tasks workers perform (VAN DONGEN et al. 2011b; MULLINGTON et 
al. 2016). Nonetheless, the capacity for sustained vigilance is needed across most if not all fields, making 
biomarkers linked to PVT lapses important indicators for use in both accident prevention and post-
accident root cause analysis. Beyond the applied value of such research, it provides the fundamental value 
of directly assaying the molecular changes associated with neurobehavioral performance for improving 
fundamental understanding of the relation between sleep loss and capacity for sustained attention.  

Most genes identified in this study exhibited down-regulation in SD relative to C persons at the 
Experimental phase, a pattern consistent with prior studies. Blood draws for subsequent nights are needed 
to determine how long the effect continues. As reviewed by Mackiewicz et al. (2009), sleep is associated 
with macromolecule biosynthesis, and prolonged wakefulness leads to down-regulation of genes 
associated with multiple metabolic processes. This study indicates potential effects on translation in the 
down-regulation of CPEB4 (Treatment and PVT effect lists) and EIF4E3 (Treatment list only). The 
CPEB4 gene is one of four vertebrate cytoplasmic polyadenylation binding proteins that regulates 
translation via effects on poly(A) elongation (RICHTER 2007; CHARLESWORTH et al. 2013). The 
phosphorylated form of the CPEB protein promotes translation of mRNAs with roles in learning, 
memory, and synaptic plasticity (RICHTER 2007; GRØNLI et al. 2012), which may explain its relation to 
PVT lapses. Grønli and colleagues (2012) report that sleep deprivation leads to reduced phosphorylation 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable9.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig1.pdf
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable3.xlsx
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable4.xlsx
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of Cpeb in the hippocampus and Eif4e in the dentate gyrus of rats. Although the EIF4E gene was not 
significantly related to PVT lapses in the present study, it was down-regulated in response to the SD 
Treatment. The protein EIF4E is a component of the translation initiation complex (GINGRAS et al. 2001); 
decreased levels of this protein would be detrimental to synthesis of new protein and could contribute to 
the known effects of sleep loss on macromolecular biosynthesis. 

Sleep Deprivation Biomarkers and Immunity 

Cytokine and stress-associated networks frequently are associated with sleep deficits (PELLEGRINO et 
al. 2012; DA COSTA SOUZA and RIBEIRO 2015), and results here support the association of SD with the 
immune system. IPA® Causal Networks detected in both Treatment and PVT analyses have BDKR as the 
master regulator (Suppl. Fig. 2, Network B). Bradykinin receptors are mediators of the inflammatory 
response (HALL 1997), as indicated by inclusion of differentially expressed genes such as the chemokine 
CXCR1 and transcription factor LITAF in the PVT network. The LITAF gene is a key mediator of the 
inflammatory cytokine response to lipopolysaccharides (TANG et al. 2006). Multiple genes related to the 
immune system are down-regulated in both Treatment and PVT lists, including LITAF, CXCR1, and 
CXCR2. The genes IL17RA and IL1B were down-regulated for Treatment only. In contrast to our 
findings, several reviews suggest that sleep loss results in increased levels of cytokines such as IL1 
(KRUEGER 2008; MULLINGTON et al. 2010; CLINTON et al. 2011; DA COSTA SOUZA and RIBEIRO 2015). 
While many reports are based on protein assays, studies reviewed by Krueger (2008) have shown that in 
brain, IL1 mRNA increases during sleep deprivation. However, results in the present study are based on 
blood rather than brain samples. Also much of the IL1 data in the reviews are derived from studies of 
animals, particularly rodents, and results may differ in humans. Details of the experimental design such as 
the time of measurement also may influence results. For example, in human blood higher mRNA levels of 
IL1B are found in day vs. nighttime samples (MÖLLER-LEVET et al. 2013).  

Nonetheless, findings regarding the relation of cytokines to sleep are varied. A study of 40 h sleep 
deprivation found both increases and decreases of inflammatory cytokines detected via immunoassay and 
ELISA kits (FREY et al. 2007), and another study of partial sleep deprivation found elevated Interleukin 6 
(IL6) protein (SHEARER et al. 2001). Yet, a meta-analysis reported no association between experimental 
sleep deprivation and circulating levels of IL6, Tumor Necrosis Factor alpha, or C-Reactive Protein 
(IRWIN et al. 2016). In contrast, the review by Da Costa Souza and Ribeiro (2015) suggests sleep 
deprivation is associated with changes in all three. In the current study, findings include evidence of 
specific aspects of the immune system being up-regulated. For example, an up-regulated group of 
Treatment effect genes (MFuzz Treatment Cluster 2, Fig. 4) contains members associated with B cell 
signaling. This is consistent with the study by Aho and colleagues (2013) of leukocyte gene expression in 
humans following partial sleep restriction, in which B cell activation is among the top up-regulated Gene 
Ontology pathways. Besides cytokines, the immune genes CAMP and DEFA4 are of interest. These 
molecules were significantly down-regulated in SD subjects in both Experimental and Recovery phases. 
Their continuing down-regulation suggest the need for more than one Recovery night sleep to restore 
molecular homeostasis, as do the Mfuzz plots showing potential circadian distortion in the Recovery 
phase (Figs. 4–5). Blood draws were not collected after the second Recovery night to determine whether 
the effect continued. Cytokine and inflammatory networks may eventually contribute to a larger 
biomarker panel for diagnosing SD, but by themselves may be too pleiotropic to discriminate between 
sleep loss and other phenotypes such as illness. 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig2.pdf
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Besides immunity, sleep deprivation typically is associated with evidence of a stress response 
including induction of heat shock proteins (TERAO et al. 2003; MACKIEWICZ et al. 2007; MACKIEWICZ et 
al. 2009; DA COSTA SOUZA and RIBEIRO 2015). One of the PVT Causal Networks predicts up-regulation 
of stress response genes including HSP70 and HSP90 (Network D, Suppl. Fig. 4). Differentially 
expressed genes in this network included transcription factors HIF1A and LITAF. While HIF1A is known 
for its role in activating hypoxic response genes, recent work suggests that HIF1A induction from hypoxia 
caused by obstructive sleep apnea, may disrupt circadian rhythms (JASPERS et al. 2015). Other members 
of Network D include cytokine receptors CXCR1 and CXCR2. 

Homeostatic and Circadian Clock Genes 

Overlap between the circadian and homeostatic sleep processes is increasingly documented in 
literature (DEBOER et al. 2003; RAY and REDDY 2016), and results here further suggest a link with 
neurobehavioral function. Among the high-scoring transcription factors in the RIF analysis was 
BHLHE40 (also known as DEC1), which together with BHLHE41 (DEC2) acts as a transcriptional 
repressor of the CLOCK/BMAL1 promoter (HONMA et al. 2002; NAKASHIMA et al. 2008). Intriguingly, 
mutations of BHLHE41 have been associated with fatigue resistance (PELLEGRINO et al. 2014). 
Additionally, three miRNAs were found to have expression profiles significantly related to PVT lapses: 
MIR24, MIR27B, and MIR152 (Suppl. Table 9). MicroRNAs are known for their roles in regulating gene 
expression (FABIAN et al. 2010), and have been associated with sleep and neurodegenerative disease 
(KAY and DAVIS 2013). Due to their relation to PVT lapses, these three miRNAs were intriguing 
candidates for regulating the molecular mechanism linking sleep deprivation and sustained attention. In 
mice Mir27b regulates the clock gene Bmal1 at the posttranscriptional level (ZHANG et al. 2016). 
Although not part of the adenylate cyclase Causal Network A generated with IPA® (Fig. 6), 
bioinformatics analyses suggest that Mir27b interacts with the Adenylate cyclase 6 (Adcy6) gene 
(FIGUEREDO et al. 2013). It has been proposed that Mir24 plays a role in regulating the period genes in 
mice (CHEN et al. 2013), and based on sequence analysis in humans, MIR24 is predicted to interact with 
CRY2 and PER2 (HEEGAARD et al. 2016). Finally we note microRNAs themselves can exhibit circadian 
rhythm in their expression. For example, Mir152 exhibits diurnal oscillations in mice (SHENDE et al. 
2011). Plasma samples in humans revealed diurnal oscillations in MIR24 (HEEGAARD et al. 2016), 
although evidence is mixed for such rhythmicity in MIR27B (FIGUEREDO et al. 2013; HEEGAARD et al. 2016). 

Transcription factor analyses highlight further regulators with possible roles in both homeostatic and 
circadian processes, such as USF1. In mammals, the CLOCK/BMAL1 protein heterodimer binds E-boxes 
in the promoters of the PERIOD (PER1 and PER2) and CRYTOPCHROME (CRY1 and CRY2) genes 
leading to their activation, and the protein products of these genes repress the CLOCK/BMAL1 complex 
and in turn their own expression, until degradation of PER and CRY products releases CLOCK/BMAL1 
(SIEPKA et al. 2007; LANDGRAF et al. 2012; SHIMOMURA et al. 2013). Oscillations in this molecular 
clock contribute to initiating circadian rhythms. USF1, like the CLOCK/BMAL1 heterodimer, binds E-
box regulatory sites with peak binding at night, antiphase to CLOCK/BMAL1 (SHIMOMURA et al. 2013). 
The authors proposed that USF1 may help generate circadian rhythms by maintaining an open chromatin 
state, enhancing the ability of CLOCK/BMAL1 binding to the E-boxes on the next circadian cycle 
(SHIMOMURA et al. 2013). In the current study, not only was there a strong prediction of a regulatory role 
for USF1 in the RIF analysis, but also the Biobase F-match tool revealed over-representation of E-box 
binding sites in the differentially expressed genes.  

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig4.pdf
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Other genes with regulatory roles supported by both RIF and F-match analyses were GABPA, TCF4, 
and ELK3. The protein encoded by the GABPA gene is a transcription factor that may function in human 
cognition (REIFF et al. 2014). Previous research on chronic sleep restriction in humans suggested a 
possible association between GABPA and gene down-regulation (AHO et al. 2013), but more work is 
needed to elucidate the relation of TCF4 and ELK3 to sleep deprivation. It should be noted that RIF and 
F-match test for regulatory effects in distinctly different ways, one by correlating expression of
transcription factors with expression of the genes of interest, and the other by directly scanning for
binding motifs in promoters. Therefore the two methods should be considered complementary, not
necessarily confirmatory.

Novel Biomarkers and Genes Specific to Neurobehavioral Impairment 

Altogether 13 genes were associated with PVT lapses but not with Treatment (Suppl. Table 4), 
including FLOT1. In mice, flotillins are up-regulated with sleep and down-regulated with sleep 
deprivation (MACKIEWICZ et al. 2007), which in the present study would be seen as a Treatment effect. 
Due to their association with lipid rafts, flotillins may have a role in neurotransmitter signaling 
(MACKIEWICZ et al. 2007; MACKIEWICZ et al. 2009). In contrast to the results of Mackiewicz et al. 
(2007), lack of a Treatment effect in the current study could reflect a difference between mice and 
humans. Of course confirming the absence of a Treatment effect for the 13 genes specific to the PVT 
analysis will require additional studies with more individuals. Differential gene expression studies as 
reported here are correlative in nature, and a different approach such as gene silencing or knockout 
experiments are needed to demonstrate causation. Nevertheless, a tantalizing hypothesis is that these 13 
genes are specifically related to the mechanism by which SD affects the capacity for sustained attention.  

Another down-regulated gene that was specifically associated with PVT was KCNJ15, an inward 
rectifying potassium channel proposed to be a key component of the potassium circadian cycle (GUMZ 
and RABINOWITZ 2013). It has been suggested that cycling of sodium and potassium currents is an 
evolutionarily conserved mechanism of governing clock neurons in the brain (FLOURAKIS et al. 2015). 
Recent work points to the role of neuromodulators influencing extracellular ion concentrations in the 
brain, in turn impacting sleep/wake activity (DING et al. 2016). Further evidence linking PVT lapses and 
ion channels exists in the IPA® Causal Network A (Fig. 6). The direction of change of the differentially 
expressed genes within this network was consistent with inhibition of an L-type calcium channel complex 
and activation of Potassium Calcium-Activated Channel Subfamily N Member 4 (KCCN4). In mice, 
knockouts of KCCN4 lead to reduced sleep duration (TATSUKI et al. 2016).  

Beyond suggesting a role of ion signaling in SD and the resulting neurobehavioral deficits, Network 
A (Fig. 6) was intriguing due to the implications for cyclic adenosine monophosphate (cAMP) signaling. 
In general, activation of adenylate cyclase leads to production of cAMP (SUNAHARA and TAUSSIG 2002), 
whereas here it was predicted that adenylate cyclase was down-regulated, which in turn would reduce 
cAMP levels. Other components of Network A include predicted down-regulation of complexes for 
protein kinase A (PKA) and phospho-cAMP response element binding protein (CREB), which are 
implicated in memory storage (GRAVES et al. 2001). A study in mice demonstrated that increasing cAMP 
in hippocampal neurons can rescue the typical memory consolidation impairment caused by sleep 
deprivation (HAVEKES et al. 2014). Via its impact on cAMP, this network also implicates the immune 
system. Narasimamurthy and colleagues (2012) proposed a model in which Cryptochrome 1 (CRY1) 
inhibits adenylate cyclase, reducing levels of cAMP and ultimately of IL6. In this study the IL6 gene was 
excluded from analyses due to its low expression across multiple samples, but reduction of this cytokine 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplTable4.xlsx
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would be consistent with the predictions of inhibition of the immune system. Additional Causal Networks 
contain purine type 2X7 (PVT) and 2X4 (Treatment) receptors (Suppl. Fig. 3, Network P). Binding of 
ATP to P2X4 receptors is known to promote REM sleep, whereas binding to P2X7 receptors promotes 
non-REM sleep (CLINTON et al. 2011). As reviewed previously (VAN DONGEN et al. 2011a; HOLST and 
LANDOLT 2015), adenosine binding to P2X7 receptors has been implicated in effecting the cumulative 
deficits in PVT performance due to chronic sleep loss, but these receptors also can act independently of 
adenosine to promote the release of sleep regulatory substances. Adenosine itself is a sleep regulatory 
substance as stated in reviews (CLINTON et al. 2011; HOLST and LANDOLT 2015), although causal roles 
for the molecule in sleep homeostasis are controversial (HOLST and LANDOLT 2015). 

Figure 6. Ingenuity Pathway Analysis® Causal Network pathway A with master regulator adenylate cyclase (ADCY), 
predicted from the PVT effect gene list. Lighter molecule color suggests less confidence in prediction of the direction 
of expression (e.g., P38 MAPK, FOXO1); darker indicates more confidence. 

Genes within the SPDY family constitute a new group of candidate biomarkers for the effects of SD. 
In differential expression analysis of both Treatment and of PVT lapses, Transcript Clusters for SPDY 
genes were up-regulated (Figs. 4 and 5), and WGCNA grouped several members of the SPDY family in a 
co-expression module (White) positively correlated with PVT lapses (Fig. 3, Suppl. Table 5). The SPDY 
members can activate cyclin-dependent kinases independent of cyclin activity, and they function in cell 
cycle progression, meiotic maturation, and the DNA damage response (GASTWIRT et al. 2007; CHAUHAN 
et al. 2012). The SPDY family has not previously been associated with sleep deprivation, although Cyclin 
A has been linked to sleep-wake transitions and the sleep homeostat in Drosophila (ROGULJA and YOUNG 
2012). The best known member of this family, SpdyA (also known as Spy1), was shown to be expressed 
in the lumbar spinal cord of adult rats and may function in nerve regeneration (HUANG et al. 2009; CAO et 
al. 2013). Meanwhile, a growing body of research points to effects of sleep deprivation on adult 
neurogenesis, albeit results seem to vary among studies and may depend on the extent of sleep 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig3.pdf
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deprivation (FERNANDES et al. 2015). Combining these findings one can hypothesize that sleep 
deprivation induces the SPDY family, thereby altering cell cycle progression and neurogenesis, potentially 
mediated by effector molecules downstream of ion-channels detailed above. This gene family has high 
sequence homology making unambiguous identification of the relevant family members difficult. 
Additional work is needed not only to confirm the link between SPDY expression and neurobehavioral 
impairment, but also to identify the specific SPDY genes responding to levels of sleep loss in blood cells.  

Future Directions 

Collecting nighttime blood samples from C individuals without disturbing their sleep would be 
helpful for refining the association of biomarkers with neurobehavioral impairment across the circadian 
cycle. Mounting evidence suggests overlap at the molecular level between the homeostatic and circadian 
rhythm sleep processes, complicating identification of biomarkers that can show impairment regardless of 
the time of measurement. Many of the genes associated with neurobehavioral impairment from SD in this 
study are connected to several different regulatory pathways, suggesting pleiotropic roles. For example, 
Networks B, A, D, and P for PVT all contain six of the 28 differentially expressed PVT genes, AQP9, 
ARRDC3, CPEB4, ELOVL5, HIF1A, and LCP1 (Fig. 6, Suppl. Fig. 2, Suppl. Fig. 3, Suppl. Fig. 4). 
Moreover, these four networks all contain two ligand-dependent transcription factors, Nuclear Receptor 
Subfamily 3, Group C, Member 1 (NR3C1), and Peroxisome Proliferator Activated Receptor Alpha 
(PPARA). While all four networks clearly predict down-regulation of PPARA, for the glucocorticoid 
receptor NR3C1 evidence of down-regulation is stronger in networks A and P (Fig. 6, Suppl. Fig. 3). The 
PPARA protein is important to coordinating rhythmic gene expression, and is a receptor for the period 
gene PER2 (SCHMUTZ et al. 2010). Ultimately, confirmation of predicted pathway networks and 
regulatory molecules will require targeted laboratory studies (e.g., gene knockout or silencing assays). 
The present investigation was aimed at biomarker discovery and, as with any such project, will require 
further work for validation (MULLINGTON et al. 2016). 

In this study (Suppl. Table 3, Suppl. Table 4), as in prior research on sleep and gene expression 
(ARNARDOTTIR et al. 2014), fold change values were typically low. Translation of biomarker panels from 
research to the operational setting will require additional data collection from more subjects to increase 
power, and to adequately represent the continuum of SD responses. However, identification of similar 
themes in multiple different analyses increases confidence in the results presented here. For example, the 
WGCNA co-expression module most strongly correlated with PVT lapses contains several SPDY genes, 
congruent with identification of SPDY members in the PVT differential expression list.  

It is anticipated that the association of gene expression with neurobehavioral impairment from sleep 
loss will be of great fundamental and applied interest. The 13 genes unique to the PVT analysis may be 
particularly promising candidates for exploring the relationship between SD and the capacity for 
sustained attention at a molecular level. This is particularly relevant in light of findings that SD affects 
multiple distinct aspects of cognition differentially (TUCKER et al. 2010; JACKSON et al. 2013; WHITNEY 
et al. 2015). Although the PVT is perhaps the most widely used neurobehavioral assay in sleep 
deprivation research, tests are available for other components of cognition, and gene expression patterns 
associated with aspects of decision making should be examined. Such comparisons may yield new 
biomarker panels or identify genes that overlap with the PVT list here, providing new insights regarding 
the molecular changes associated with the response of diverse aspects of neurobehavioral performance to 
sleep loss. Results from other fields such as proteomics and metabolomics may yield further biomarker 
candidates and capture additional phenomena, such as post-translational effects. Separate analyses of 

http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2010s/media/SupplFig2.pdf
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fatigue resistant individuals to determine any gene expression patterns unique to them could advance 

understanding of the ability to maintain neurobehavioral functioning during SD. Because the current 

study only included three fatigue resistant subjects, this is left to future studies with a larger sample size. 
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