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Mobile meteorological information tailored to landing phase of flight. Part II: Refinement 
 

William R. Knecht 
Civil Aerospace Medical Institute, FAA, AAM-510 

 
Padhrig McCarthy 

Research Applications Laboratory (RAL) 
National Center for Atmospheric Research (NCAR) 

 
EXECUTIVE SUMMARY 

 
 This study represents the fourth in a series of tests of a mobile meteorological application intended for aircraft 
pilots, and designed to run on a tablet computer. The current study focuses on features that the third study (Knecht & 
Dumont, 2017) proved useful in assessing the risk of runway winds during the landing phase of flight. Specifically, 
graphical depictions of runway winds were compared with textual descriptions of the same Meteorological Terminal 
Aviation Routine (METAR) report-like information.  
 Significant findings emerged. First, graphical depiction was significantly more efficient than textual depiction, taking 
only 70% as much cognitive processing time, with no penalty in accuracy. Moreover, when available viewing time was 
severely constrained to just 5 seconds, pilots timed out significantly fewer times with graphical depiction.  
 Second, graphical depiction produced significantly fewer misclassifications of landing difficulty than textual depic-
tion. 
 Third, graphical depiction ultimately produced fewer mistakes in deciding whether or not to land. 
 Fourth, graphical depiction produced significantly higher pilots’ confidence in their landing decisions, particularly 
when available viewing time was severely constrained. And, because those decisions were demonstrably better, the 
higher confidence appeared warranted. 
 Fifth, pilots appeared to employ heuristics (simplifying rules) when estimating risk due to runway winds. In textual 
depiction, especially when time is limited, pilots appear to ignore trigonometry and instead base their risk estimates as 
if the stated wind speed is the crosswind component. Similarly, in graphical depiction, pilots appear to focus on the 
more severe wind component as the limiting risk factor for that landing. Interestingly, both heuristics lead to overesti-
mation of risk, and more conservative landing behavior.  
 Finally, pilots unanimously preferred the graphical depiction, both in this study, and the previous one. Unanimity 
of preference is quite rare in product development. 
 

INTRODUCTION 
 
 This report summarizes continued empirical testing of a low-cost, portable device designed to deliver timely weather 
information to the general aviation (GA) flightdeck. This device is a mobile meteorological application (MMET) that 
runs on a tablet computer, and is currently under development by the Research Applications Laboratory (RAL) of the 
National Center for Atmospheric Research (NCAR). 
 This MMET has so far been tested in multiple phases. Phase 1 evaluation began at the FAA’s William J. Hughes 
Technical Center’s Aviation Weather Demonstration and Evaluation (AWDE) Services branch as a scenario-based cog-
nitive walkthrough (AWDE DOC150). Phase 2 testing was performed at the Technical Center’s Human Factors Branch 
Cockpit Simulator Facility (Ahlstrom, Caddigan, Schulz, Ohneiser, Bastholm & Dworsky, 2015). That study focused on 
pilot separation from weather in the cruise phase of flight. Phase 3 testing was conducted at the FAA’s Civil Aerospace 
Medical Center (CAMI), and focused on runway winds during the landing phase of flight (Knecht & Dumont 2017). 
 The current (Phase 4) study refines the Phase 3 methodology by testing an even more-advanced concept for dis-
playing METAR information. Figure 1 illustrates the starting point—two wind-information depictions previously tested 
in Phase 3. 
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 a b 
Figure 1. Two wind-information depictions previously tested in Phase 3, a ) the traditional textual METAR used as an experimental 
baseline, or control condition, b) the experimental “two-arrow” screen, showing runway-relative wind components. 
 
 In Phase 3, the two-arrow graphical runway wind depiction (Fig. 1b) greatly outperformed its textual comparator 
(Fig. 1a). In Figure 1b, notice how the most-current observation’s ground-level wind speed is represented as separate 
headwind/tailwind and crosswind components. This method of depicting the winds resulted in pilots spending signifi-
cantly less mean viewing time (8.9 sec, p = 1.5×10-8), compared to 17.4 seconds for the equivalent, traditional text-based 
METAR (Fig. 1b), with no measurable loss in the quality of landing-difficulty judgements. 
 This was a significant finding, one suggesting immediate, useful improvement in the way runway wind information 
could be displayed to pilots during landings. 
 The current (Phase 4) study now builds upon Phase 3 to investigate additional refinements. The Figure 1b depiction 
is enhanced with color coding, plus a proto-representation of wind component-speed variability built into the tail of 
each arrow (the color-coding will be the main emphasis of the current study). Figure 2b illustrates, with 2a showing the 
same information in textual format (to be used as the statistical control condition). 
 

    
 a b 
Figure 2. a) the control condition—textual information describing wind speed, direction, and variability, b) the experimental condi-
tion—the same information in graphical form (red color indicates crosswind exceeds pilot-specified thresholds). These two depic-
tions will be tested against each other. 
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METHODS 
 

Experimental Questions 
 
 Our primary goal was to answer specific questions about this latest version of low-altitude runway wind information 
depiction.  
 

1. Would this enhanced graphical depiction be at least as accurate in determining landing difficulty as  textual 
depictions of runway wind information currently in common use?  

2. Would pilots again find the graphical depiction faster to use, as they had in the previous experiment?  
3. Would there again be a speed-accuracy tradeoff, as we found in our prior experiment?  
4. How would greatly restricting the amount of time pilots had to view the runway wind information depiction 

affect their judgments about the landing difficulty posed by those winds?  
5. How would pilots’ ultimate decisions whether or not to land be affected by the manner in which runway wind 

information was depicted? 
6. What relative levels of confidence would pilots express in the textual and graphical depictions, when compared 

with one another? 
 

Experimental Method 
 

Hardware and Software 
 
 The original Phase 3 MMET software was written by Dumont (2017), and was enhanced for this Phase 4 research 
by author McCarthy. It was written in JavaScript and packaged with Sencha Command, a tool for developing platform-
independent JavaScript deployments. The web application bundle ran in the WebKit browser on an Apple tablet com-
puter (iPad). The application loaded all scenario wind data from static files deployed with the application, and perturbed 
the data, adding a small amount of “speed noise” before showing it to pilots for evaluation. This ensured that not all 
scenarios of the same difficulty level would end up suspiciously having the exact same wind speed. Pilot interactions 
with the application were logged via WiFi connection to the internet, and the resulting records post-processed with a 
perl script to extract the experimental variables used to establish results presented here. 
 

Measuring Quality of Information Depiction 
 
 This research explores methods of improving the display (depiction) of runway wind information. In order to claim 
that something is “improved,” we have to have some reasonable way to measure display quality. We therefore chose to 
operationalize quality as: 
 

1. Speed of cognitive processing 
2. Accuracy of decision 
3. Confidence-in-estimate of decision accuracy 

 
 “Speed” of cognitive processing is simply how long it takes to make a decision whether to land, go around, or 
divert-to-alternate, given the low-altitude wind information. We used available viewing time as a proxy for speed. 
This was defined as the time from when the weather information first appeared to the pilot, until the pilot moved on 
to the Assessment screen (described below). 
 We defined “accuracy” as the difference between the perceived difficulty of a wind scenario and its objective 
difficulty. The smaller the difference (defined as δ, “delta”), the better the wind display. This will be defined in detail 
presently. For now, Figure 3 illustrates the basic concept. 
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Figure 3. “Display quality” was measured as the difference δ, defined as “perceived scenario difficulty minus objective scenario 
difficulty,” both on a scale of 0-100. In a perfect display δ would equal zero. 
 
 “Confidence-in-estimate” simply meant “How confident was each pilot in their final decision about each scenario?” 
Now, we all know that “high confidence” in something does not guarantee “high quality.” Nonetheless, confidence is 
useful in estimating how readily people may accept a new product, which is naturally of great concern to manufacturers. 
 The terms “objective scenario difficulty” and “confidence-in-estimate” require detail concerning the exact method 
of calculation. We shall postpone discussing confidence-in-estimate since it is easier to understand after seeing the 
Assessment screen (Fig. 4 below). We therefore turn first to how we calculated scenario difficulty. 
 
Calculation of Objective Scenario Difficulty.  
 Operationalizing our experimental method required wind scenarios with various objective (or “actual”) levels of dif-
ficulty. However, this required controlling for each pilots’ skill and risk-tolerance. For instance, if one pilot thought a 3-kt 
crosswind was “easy” and another thought a 5-kt crosswind was easy, then to construct an objectively “easy” scenario, 
we would obviously want the crosswind component to be between 0 and 3 kts for the first pilot and 0-5 kts for the 
second. 
 The mathematical term for this kind of individual tailoring process is called normalization, and its goal here is to 
create a single “normal” scale (e.g., 0-100) for “landing difficulty” that can be applied to all pilots, no matter what their 
skill or risk tolerance. This allows us to compute wind values to test each pilot individually, and then later compare them 
with one another statistically. 
 To create such a normal scale, during the Setup page at the very beginning of each pilot’s test session, we had pilots 
give us their individual “thresholds” for wind-component speeds. Figure 4 shows a screenshot of how this looked. 
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Figure 4. Full-sized screenshot of the Setup page, showing, for example, a “Low Headwind Threshold” of 6 kt and a “High Cross-
wind Threshold of 9 kt” for a hypothetical pilot. 
 

1. “Low Threshold” was defined as “Below that speed = I wouldn’t worry about that wind component.” 
2. “High Threshold” was defined as “Above that speed = I would hesitate to land with that wind component.” 

 
 Knowing each pilot’s “easy” and “difficult” wind speeds allowed us to define wind speeds for “easy” and “difficult” 
scenarios for each pilot individually. Additionally, from these two values we could interpolate the remaining “moderate” 
level of difficulty by simply picking a wind speed halfway between the two extremes. 
 Appendix A details the exact algorithm used to construct the three levels of objective scenario difficulty. Essentially, 
what that algorithm did was to mathematically transform the range of speeds gathered from the Setup screen—some-
thing akin to “stretching a rubber ruler and then sliding it sideways”—until that old range now fit the new, “normal” 0-
100 scale. 
 Theoretically, this individually customized method of creating scenarios should be far more objective and statisti-
cally sensitive than merely picking arbitrary wind speed values and assuming that their difficulty levels would be the 
same for all pilots. Because “objective difficulty” was now normalized on a standardized 0-100 scale, which controlled 
for each pilot’s skill and risk-tolerance, we could, in theory, compute δs and thereby compare one pilot to another in 
terms of how closely their perceptions of a given scenario’s difficulty matched its objective difficulty. 
 
The Enhanced Graphical Depiction 
 Now—understanding how “landing difficulty” can be objectively defined for each pilot—one can fully appreciate 
the enhancements being tested in the current graphical wind depiction. The depictions we tested were precisely designed 
to communicate individualized landing difficulty both quickly and accurately. Figure 5 elaborates. 
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 In Figure 5, the crosswind-component arrow depicts a most-recent reading of 12.2 kt, which greatly exceeds our 
hypothetical Figure 4 pilot’s stated crosswind comfort-zone upper threshold of 9 kt taken from the Setup screen (Fig. 
4). Hence, the crosswind’s arrow tip is colored red to convey danger in the most-recent wind data available (21:14 Zulu, 
being reported at 21:23 = 9 minutes old). In contrast, the arrow tip of the headwind component is green, denoting 
“safe” in the most-recent wind data available, according to this pilot’s stated standards. 
 

    
 a b 
Figure 5. a) an example of the two-arrow landing-wind situation at 21:14 Z (being reported at 21:23 Z), b) enlarged, annotated view 
of its two wind components. 
 
 Note that the latency—the age of the data—should certainly be a factor in how much a pilot would trust these data. 
The older the data, the less trust we expect in them. Therefore, data latency was held constant during this experiment 
to negate any effect it might have on the statistical analysis (described later). 
 

Experimental Design 
 
 In this section, we report features of the experimental design—the independent variables and dependent variables, 
the “look-and-feel” of the MMET assessment screen, plus how we controlled for unwanted experimental effects such 
as fatigue and learning effects. 
 
Independent Variables (IV) 
 This study employed a within-participants (repeated measures) statistical design. Each pilot saw and responded to a 
set of 24 runway wind landing scenarios. Each scenario displayed a single page of wind information similar in appearance 
to Figure 2, depicting component-speed values that were customized for each pilot. 
 As the name suggests, independent variables are the factors we manipulate in an experiment to see how they affect 
designated outcomes (our dependent variables). The current design involved three IVs in a 2 × 3 × 4 = 24 total-trial 
design: 
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Dependent Variables (DV) 
 Dependent variables are experimental outcomes whose numerical value we hypothesize will depend on the numer-
ical values we set up for our independent variables. As stated earlier, we set up three DVs: 
 

1. Speed 
2. Accuracy 
3. Confidence-in-estimate 

 
 Speed. As previously mentioned, Speed was merely the time it took each pilot to assess the wind situation. This was 
used as a proxy for cognitive processing time. It was defined as the elapsed time from when the wind information page 
(Fig. 2a or b) was first shown to the pilot until the instant they moved on to the subsequent Assessment page (Fig. 6).  
 Accuracy. As also previously stated, Accuracy was defined as a difference score (δ, ”delta”), equal to “perceived landing 
difficulty” minus “objective landing difficulty.” For each scenario assessment, the pilot was asked to indicate perceived 
landing difficulty (PLD) by moving a slider along a scale such as shown in Figure 6. This slider showed the “normal 
scale” (0-100 “difficulty units”), representing how difficult the pilot expected the landing to be, given the wind information 
they had just seen, within the context of their own personal level of skill and risk tolerance, and their aircraft’s capabilities 
(with the aircraft defined as the one they fly most often). 
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Figure 6. Full-sized screenshot of the Evaluation page. 
 
 Meanwhile, recall that each scenario’s objective landing difficulty (OLD) had been customized for that pilot, based 
on her/his previously reported values for how wind speed and direction would affect landing difficulty for them, per-
sonally. Therefore, the assessment page gave everything else necessary to calculate a difference score,  perceived- objective 
=δ. And if, as hypothesized, one wind depiction was higher in quality than another, we would expect that either 
 

1. most of its δ scores would be smaller, or 
2. its δ scores would be similar, but pilots would take less time to make their risk estimates. 

 
 Independent variables B1 and B3 were used to test whether pilots could reliably discriminate between easy and 
difficult landing winds. Again using a 0-100 difficulty scale, the objective difficulty of B1 (Easy) landings was set at 20, 
and of B3 (Hard) landings was set at 90. Appendix A gives fuller detail. 
 In contrast, IV B2 was used to test a hypothesis of what mental model(s) pilots might use in estimating risk. Ap-
pendix B provides detail. 
 Confidence-of-Estimate.  Figure 6 shows two putative measurements of pilot confidence in the quality of the infor-
mation they had just seen. The first measurement was inferred from the pilot’s choice whether to land, go around, or 
divert, given the wind information for that scenario. We generally expected to see landings increase as scenario difficulty 
decreased, with go-arounds reflecting difficulties in the middle range. 
 The 7-point Likert scale was expected to be a somewhat more sensitive measure of actual pilot confidence, mainly 
because it was a direct question about confidence rather than an inference based on the decision to land/go around/di-
vert. 
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Control for Unwanted Experimental Effects 
 One final detail required attention: Repeated-measures designs must control for unwanted experimental effects 
such as fatigue and learning effects, particularly in an experiment such as this, having far too many DV combinations 
to counterbalance (i.e., to present every possible scenario presentation order to an equal number of participants).  
 Therefore, to counteract learning or fatigue over the course of each test session, the presentation order was set up 
to employ randomized-counterbalanced pairs. For instance, if one randomly generated presentation order with scenarios 
labeled A-R happened to be H J A G C B Q L F K M R N O E P I D, then a backward-pair D I P E O N R M K F L 
Q B C G A J H was presented to the next pilot.  
 
No Correction for Familywise Error 
 Since this was an exploratory study, no correction was made for familywise error. Familywise error is the inflation 
of Type I error (a.k.a. a false positive—finding “significant differences” where there truly are none) due to conducting 
multiple statistical analyses within a single study. Logically, it is similar to reaching into a jar containing 95 white marbles 
and 5 black marbles, to see if a black marble might turn up. Doing this just once, one expects the probability of getting 
a black marble to be p = .05. However, if one replaces the withdrawn marble, and then repeats the entire process 100 
times, the chance of getting a black marble at least once purely by chance increases greatly (to 1-.95100 ≈ .994), even 
though the underlying ratio of black to white never changes for each individual random draw. 
 In other words, the more times you repeat a chance process, the more times falsely “significant” results may occur 
purely by accident. 
 There are methods of correcting, or controlling, for this kind of error, to keep each individual analysis in a group 
of analyses “honest” at some stated value of significance (e.g., p = .05). However, in doing so, the power of the overall 
study—its ability to detect effects if they truly exist—decreases greatly. Therefore, it is common in broad, preliminary 
studies such as this one to omit the correction for familywise error, in the interest of boosting power. And, that is the 
approach we take here. Ideally, effects that are found preliminarily should later be replicated with a narrower study. 
 

RESULTS 
 

Pilot Participants 
 
 Seventeen general aviation pilots were recruited from a local flight school, and were paid $50 USD for their partic-
ipation. Table 1 summarizes demographics. 
 

Table 1. Pilot demographics (N=17). 
Student 0 CFII 3 Age-mean 22.3 TFH-mean 323 
Private pilot 17 Commercial 7 Age-median 22.0 TFH-median   200 
Instrument-rated 15 ATP 0 Age-SD 3.4 TFH-SD 205 
CFI 4 Multi-engine 4 TFHA-max 800   TFH-min 98 
ATotal flight hours 

 
Pre-test Instructions and Practice 

 
 The pre-test instructions presented to pilots are shown in Appendix C. These included both text and screenshots 
of the application’s Setup and Evaluation pages. Additionally, a sample sheet (not shown) was provided showing screen-
shots of the two wind depiction types in Figure 2, with text descriptions of all their important features. 
 Pilots were then walked through two practice pages, one for each of the two depiction types. 
 

Preliminary Examination of Data 
 
 Recall that the research design was set up as 2 × 3 × 4 = 24 treatments of (Depiction Type (A) × Scenario Difficulty 
(B) × Time Constraint (C).  
 Before beginning intensive statistical analysis, we first checked the data to see if they satisfied the assumptions of 
repeated-measures analysis of variance (RM-ANOVA). If not, we tested alternate ways of analysis, and report here those 
found to be most satisfactory. 
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Perceived Landing Difficulty 

The PLD Data Are Non-normal 
 Perceived Landing Difficulty was our proxy for accuracy—how accurately pilots could estimate the difficulty of landings 
that we had custom-engineered based on their personal minimums and maximums, that is the objective “easy” and 
“hard” wind-speed values each pilot had given us moments beforehand. 
 Preliminary statistical analysis of PLD by the Explore function of IBM SPSS revealed that non-normalities and 
outliers challenged analysis of the data by standard RM-ANOVA. Non-normalities are frequency distributions of IV 
component groups (e.g. “A1,” “B2”, or “C3”) insufficiently resembling normal (Gaussian) bell-shaped curves. Outliers 
are values or scores far above or below a sub-group mean. Obviously these two conditions are related and, in fact, each 
can cause the other (e.g., if we add too many extreme low and high values to an otherwise-bell-shaped curve with, it will 
cease resembling a bell-shaped curve). 
 Figure 7 shows raw scores (taken right from the difficulty slider in Fig. 6, as opposed to the derived measure δ we 
defined earlier). Examining these raw scores, we see that the first of our three main independent variables, Depiction Type 
(with sub-groups A1-Textual vs. A2-Graphical), showed a severe dip in the middle of the both A1 and A2, and grossly 
failed the commonly used Shapiro-Wilk test1 of normality (pS-W A1 = 7.92*10-7, pS-W A2 =4.82*10-12).  

 

 
 a b 
Figure 7. Frequency distribution (histograms) of Perceived Landing Difficulty for a) textual (A1) vs. b) graphical (A2) information 
depictions. The raw data fail normality testing, making RM-ANOVA inappropriate. Nonetheless, as we can easily see, the two sub-
group means are so similar that their difference is unlikely to be statistically significant (pt = .337). 
 
 Figure 8 shows that raw scores for the second main IV Objective Landing Difficulty (B) also displayed severe non-
normality. The PLD frequency distribution for Easy landing scenarios (B1) had a long tail pointing rightward, while 
Moderate (B2) and Hard (B3) scenarios both had long tails pointing leftward. Consequently, all three sub-groups failed 
the Shapiro-Wilk test (pS-W B1 = 2*10-6, pS-W B2 =4*10-6, pS-W B3 =.00318). 

                     
1 In the Shapiro-Wilk test, a p-value < .05 is considered “failure,” which means the frequency distribution in question is considered 
non-normal, and non-parametric tests should be used. If p > .05, the distribution “passes,” is considered normal, and regular (par-
ametric) tests may be used. 
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 a b c 
Figure 8. Frequency distribution of Perceived Landing Difficulty for a) Easy (B1) vs. b) Moderate (B2) vs. c) Hard wind-speed scenarios. 
Again, the data violate ANOVA’s normality assumption, so we tested the main effect of B by averaging and paired-sample t-test. 
 
 Raw scores for third main IV, Viewing Time (C), fared no better. Like Depiction Type, the sub-groups were bimodal, 
Figure 9 shows the PLD frequency distributions. All four sub-groups failed Shapiro-Wilk (pS-W C1 = 9.82*10-7, pS-W C2 
=6*10-6, pS-W C3 =2*10-6, pS-W C4 =1.5*10-5). 
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 a b 
 

 
 c d 
Figure 9. Frequency distribution of Perceived Landing Difficulty for viewing-time-constrained scenarios, a) 40-sec (C1) vs. b) 20-sec 
(C2) vs. c) 10-sec (C3) vs. d) 5-sec (C4). Again, the data violate ANOVA’s normality assumption. As we can see, the four means are 
so similar that they are unlikely to be significantly different. 
 
Results After Non-normality was Addressed. 
 There are methods of transforming data to make the frequency distributions more normal. We tried the standard 
methods on our raw scores, including logarithmic transform (xnew = log(xold)), power transform (xnew = (xold)a), and winso-
rizing (replacing the lowest and highest values with copies of the next-lowest and next-highest, respectively, and then 
repeating the process, if necessary). We even tried deleting as many as four selected pilots’ data completely2 before and 
after applying various transforms. Yet, the modified distributions persistently failed normality testing, no matter what 
series of methods was applied. 
 Ultimately, alternate tactics were required. For one, we could calculate confidence intervals and visually look for 
main effects likely to be significant (e.g., whether A1 looked substantially different from A2). Figures 7-9 and 11-13 take 

                     
2 Deleting a given pilot’s data would be based on an assumption that many of those data were somehow faulty. For example, perhaps 
that pilot had not treated the experiment seriously, or had panicked after being timed-out on one or more scenarios. There should 
usually be some objective reason for suspecting this (e.g., if that pilot showed a large number of very low or very high scores that 
clearly looked suspicious). 
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this approach. Confidence intervals could be based on the standard error of the mean (SEM),3 which is (rather miracu-
lously) normal, no matter what the shape of a frequency distribution.4 This method would, of course, not be strictly 
correct, since our repeated-measures data violated the confidence interval’s assumption of independently sampled data. 
Nonetheless, we could still gain a sense about group means that happened to be either quite similar or very dissimilar. 
 Also, and more properly, given three IVs, we could at least test main effects (e.g., whether the average of all 12 A1 
scores was reliably different from the average of all 12 A2 scores). Collapsing the data across two IVs to yield one average 
score from each pilot on the remaining IV would create a single score for each pilot for each IV. Then, a paired-sample 
t-test could be used, if the n=17 frequency distributions were demonstrably normal, or a Wilcoxon non-parametric test 
of ranks otherwise. While this lacks the elegance and richness of RM-ANOVA, the results will be more convincing to 
a conservative audience. 
 After such averaging, indeed, the n=17 main-effect frequency distributions all passed Shipiro-Wilk with signifi-
cances ranging from .219-.989. Having thus addressed the non-normality problem, Table 2 contains p-values and effect 
sizes5 for 2-tailed paired t-tests of separate main effects. 
 

Table 2. Main effects for Perceived Landing Difficulty raw scores (p-values of 2-tailed paired t-tests. 
Effect size Cohen’s d in parens) 
 A2 B2 B3 C2 C3 C4 

A1 .337  (.69)      
A2       
B1  1.028*10-10  (15.10) 1.452*10-11  (16.97)    
B2   0.025   (2.34)    
C1    .412 (.47) .660  (.25) .590  (.36) 
C2     .742  (.23) .853  (.09) 
C3      .818  (.12) 

 
 Main Effect for Depiction Type (IV A). Table 2 indicates that, just like the Phase 3 experiment, the main effect of textual 
(A1) versus graphical (A2) depiction on resulting PLD was non-significant (pt = .337), This implies that—even given 
constrained viewing times—on average, textual depiction seemed to produce about as good judgment of landing difficulty as did graphical 
depiction (however, be advised that the “A closer look” analysis below will tell a much richer story). 
 Main Effect for Objective Landing Difficulty (IV B). The ability to discriminate between Easy, Moderate, and Hard ob-
jective landing difficulties were all significant. Particularly, Easy versus Hard difficulties (B1 vs. B3) were highly signifi-
cant (pt = 1.452*10-11), with a gigantic effect size (d = 16.97 standard errors). This tells us that, on the whole, pilots were able 
to differentiate at least between easy and hard landings (although, again, check “A closer look” for details). 
 Main Effect for Level of Time Constraint (IV C). The p-values for the main effect Time Constraint on PLD were all non-
significant, ranging from .412-.853. This implies that on the whole, available viewing time, from 40 seconds down to 5 seconds, 
exerted no significant effect on perceived landing difficulty. But—again—we need to take a closer look. 
 A closer look. Despite these bland results, there was more to Perceived Landing Difficulty than merely main effects. Main 
effects concern group averages. Yet, there is often great value in examining the frequency distributions themselves 
because those can tell us about variation. For instance, how often were pilots far off the mark in their judgments of 
landing difficulty?  
 A quick look back at Figures 7-9 shows there was considerable variation in these data. That means we need to 
realize that, despite averages, pilots are not uniform, precise computing machines when it comes to assessing windy 
landings. 
 

                     
3 SEM = standard deviation/sqrt(n), and is used to perform a statistical test (z-test) on independently sampled means. Any two means 
separated by more than 1.96 SEM are considered to be significantly different at the p=.05 level. Thus, the area on the x-axis en-
compassing 1.96 SEM above and below a mean is called its .95 confidence interval (CI). The caveat here, however, is that z-tests assume 
independent measurements, whereas our data were considered correlated since each pilot provided 24 data points. 
4 Normality of the SEM is described by the Central Limit Theorem in probability theory. 
5 Here, the effect size, Cohen’s d, is a type of z-score, being the (difference between the two means) / (pooled standard error of the 
mean). Effect sizes of about 2 or greater indicate strong support for two groups being reliably different from each other. 
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Error Scores δ (Delta) 
 Recall our discussion of δ, which was defined as an error score, specifically (Perceived Landing Difficulty - Objective 
Landing Difficulty). Recall, also, the theoretical notion that, in “perfect perception” of landing difficulty, δ would equal 
zero. 
 Referring back to Figure 8, pilots’ perceptions of landing difficulty (PLD) were often somewhat low or high (δ = 
±20-30 points, colored yellow in Fig. 8). Sometimes, they were considerably high or low (δ = ±30-40 points, colored 
orange). In a few cases PLD was way off (δ more than ±40 points, colored red). All these cases can be called misclassifi-
cations, and we will later question what caused them. 
 To help visualize the distribution of misclassifications, we can plot frequency distributions of δ.  In Figure 10, δ 
scores of zero denote correct judgments of landing difficulty. Scores less than zero represent underestimates of difficulty, 
scores greater than zero represent overestimates. 
 

  
 
Figure 10. Perceived landing difficulty estimation error (δ = Perceived Landing Difficulty – Objective Landing Difficulty) for objectively 
Easy (B1) vs. Moderate (B2) vs. Hard (B3) scenarios. Easy scenarios are often rated more difficult than they objectively are, while 
Hard scenarios are often rated less-difficult than they are.  
 Note that, in the case of Hard (difficult, B3) landings, difficulty was often underestimated (δ < 0, judged as less 
difficult than the landings objectively were). Symmetrically, Easy (B1) landings were often overestimated (δ  > 0, judged 
as harder than they objectively were). The same result was also seen in our prior experiment (Knecht & Dumont, 2017), 
and so was not entirely unexpected. 
 Table 3 shows these effects using means and normality scores for δ. Moderate scenarios appeared to be the least-
accurately judged, but let us suspend judgment on that for now. We will explore Moderate-difficulty scenarios in greater 
detail later, in the section titled B2 Results and Their Significance. 
 Graphical depictions produced fewer major misclassifications than did textual depictions. Table 4 numerically sum-
marizes these major misclassifications, that is, all B1 and B3 PLD scores colored yellow, orange, or red in Figure 8 (i.e., 
all Easy scenarios rated greater than 40, and all Hard scenarios rated < 70). We see in Table 4’s bottommost row that 
textual display produced 56 misclassifications, compared to graphical display’s total of just 19. Table 4’s 17 row totals 
fails normality testing for the graphical data, but we can still compare the two row totals with the non-parametric 2-
tailed Wilcoxon test, which yields a significant pW = .010.  
 We may therefore claim that—even though the means of the textual and graphic δ scores were similar—textual 
depictions produced significantly more misclassifications of landing difficulty than did the graphical depictions. 
  

Table 3. Error (δ) for perceived landing difficulty (DV B) in Fig. 8. 
Objective scen-

ario difficulty n Mean raw 
score 

Expected 
score Mean δ pS-W 

B1-Easy 136 28.38 20 8.38 .000002 
B2-Moderate 136 70.63 50 20.63 .000004 
B3-Difficult 136 76.87 90 -13.13 .003177 
A value of pS-W < .05 on Shapiro-Wilk, implies significant non-normality. 
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Table 4. Misclassifications of landing difficulty.  
 A1 (Textual)  A2 (Graphical)  

 B1 (Easy) B3 (Hard)  B1 (Easy) B3 (Hard)  
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1       65  1         0 
2     69 63  63 3         0 
3 42    60  67 59 4         0 
4     39 52 54 47 4         0 
5         0         0 
6         0         0 
7   45 50  70 64 59 5       65 64 2 
8         0     70 56 66 60 4 
9 50 59 63 67 70 69  62 7         0 

10     68   50 2     50  70 69 3 
11 69  65      2         0 
12 65 40  55 66 68 69 34 7        63 1 
13    42 70  62  3         0 
14 55 54  50   50  4  52  43     2 
15  55   70 60 66 45 5        54 1 
16 68 80 71 58     4         0 
17 50 54 67 62 63    5 50 54 45 65  68  70 6 

COUNT 7 6 5 7 9 6 8 8  1 2 1 2 2 2 3 6  
Bs 25 31  6 13  
As Total Textual Misclassifications = 56  Total Graphical Misclassifications= 19  

 
 

Elapsed Viewing Time 
 
The ET Data Are Also Non-normal 
 Elapsed Viewing Time (ET) was our proxy for cognitive processing speed. Like the PLD data, the ET data were also 
non-normal. Figures 11-13 show this clearly. But, again, we can informally scan for significant group mean differences 
by creating confidence intervals and then collapsing each IV’s data across the other two IVs, using the Wilcoxon to test 
for main effects. 
 

 
 a b 
Figure 11. Frequency distributions of Elapsed Viewing Time for a) textual (A1) vs. b) graphical (A2) information depictions. The raw 
data severely fail the Shapiro-Wilk normality test (pS-W A1 = 2.30* 10-14, pS-W A2 = 6.09* 10-18). Nonetheless, the two means appear 
likely to be significantly different if we examine the confidence intervals. 
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 a b c 
Figure 12. Frequency distributions of Elapsed Viewing Time for a) Easy (B1), b) Moderate (B2), and c) Hard (B3) objective landing 
difficulty. The raw data severely fail the normality test (pS-W B1 = 7.31* 10-15,  pS-W B2 = 5.37* 10-12, pS-W B3 = 8.85* 10-12). Nonetheless, 
B1 looks likely to differ significantly from B2. 
 

 
 a b 

 
 c d 
Figure 13. Frequency distribution of Elapsed Viewing Time for viewing-time-constrained scenarios, a) 40-sec (C1) vs. b) 20-sec (C2) 
vs. c) 10-sec (C3) vs. d) 5-sec (C4). Again, the data violate ANOVA’s normality assumption (pS-W C1 = 1.52* 10-8,  pS-W C2 = 5* 10-6,  
pS-W C3 = 1.76* 10-8,  pS-W C4 = 9.66* 10-15). As we can see in panel (a), the four means look likely to be significantly different, with the 
exception of C1 versus C2. 
 
Results After Non-normality is Addressed. 
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 Similar to the approach taken with Perceived Landing Difficulty, we first generated confidence intervals for Elapsed Time, 
visible in Figures 11-13. While not strictly accurate, they are close, and can help us visualize what to expect from subse-
quent numerical testing. 
 We then collapsed the time data for each of the three IVs (A, B, C) across the other two to yield averages. After 
averaging, the three n=17 frequency distributions all passed Shipiro-Wilk with significances ranging from .207-.878, 
with the exceptions of B1 (pS-W = 043) and C4 (pS-W = 7.9* 10-5).  
 Table 5 contains p-values and effect sizes for paired t-tests where normality permitted, with Wilcoxon p-values for 
variable pairs involving a non-normality (i.e., anything paired with B1 or C4). 
 

Table 5. Group means and significances for Elapsed Viewing Time (p-values for 2-tailed 
paired t-tests with effect size d in parens. Wilcoxon tests highlighted yellow). 
 IV group means (milliseconds) 
 A1 A2 B1 B2 B3 C1 C2 C3 C4 
 9931 6942 7571 9401 8338 11888 10251 6977 4632 

 
 Significances between IV pairs (and Cohen’s d) 
 A2 B2 B3 C2 C3 C4 
A1 7.21*10-5  (2.92)      
B1  .004  (1.59) .149  (.69)    
B2   .088  (.93)    
C1    .040 (.99) 2.88*10-4  (3.44) 2.93*10-4 (5.32) 
C2     1.55*10-4  (3.14) 2.93*10-4 (5.89) 
C3      5.03*10-4 (4.89) 

 
 
 Results for Depiction Type (IV A). Graphical depictions produced faster judgment of landing difficulty. Table 5 indicates that, just 
like the prior experiment, the main effect of textual (A1) versus graphical (A2) depiction was significant (pt = 7.21*10-

5). Averaged across the entire 17 pilots, graphical depiction was an average of 2.99 seconds faster per scenario, repre-
senting just 70% as much processing time. 
 Results for Landing Difficulty (IV B). Pilots spent the most average time on Moderate-difficulty landings (B2, 9401 ms). They spent 
about the same average time on hard landings as they did on easy ones (B1 vs. B3). This may seem counter-intuitive, but interviews 
with pilots afterward revealed that they found it relatively easy to quickly scan even a long column of numbers, as long 
as those numbers were either very small or very large and did not vary much. This was clearly a heuristic, and we will 
elaborate on this in the Discussion section. 
 Results for Level of Time Constraint (IV C). Each of the four time-constraint values differed significantly from the others. Table 5 
shows that all pairwise comparisons had significant p-values, ranging from .040-.0000721. This is not surprising, since 
most pilots tended to use extra time whenever it was available. 
 The percentage of times pilots ran out of time depended on how much time they were given. Given the maximum of 40 seconds 
(C1), only a single pilot timed-out on a single scenario. In contrast, over 74% of scenarios timed-out when pilots were 
given only 5 seconds (C4). Figure 14 presents time-outs grouped by time constraint and depiction type (graphical vs. 
textual).  
 Overall, pilots timed out on significantly more textual than graphical depictions, (75 vs 53). This is evidenced by collapsing each 
pilot’s 24 scenarios down to one total per pilot for A1 and one total for A2. Comparison of the 17 pilots then showed 
acceptable Shapiro-Wilk normalities (pS-W = .110, .078), with a 2-tailed paired t-test significant at pt = .010. 
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Figure 14. Percentage of scenarios that timed-out (graphical in red, textual in blue). 
 
Relation Between Pilot Total Flight Hours and Misclassifications 
 It seems intuitive that more-experienced pilots might be better at classifying landing difficulty than less-experienced 
pilots. However, there was no significant evidence to support this. While there was a negative correlation between the 
number of PLD misclassifications and total flight hours (TFH), consistent with the notion that greater TFH might result 
in fewer misclassifications, that correlation was low and non-significant (rho = -.331, 2-tailed p = .195). 
 
Speed-Accuracy Tradeoff 
 Ideally, we would expect to find a direct speed-accuracy tradeoff, in that “more careful” pilots might spend more 
time, and thus end up with lower error in their judgments of landing difficulty. In functional terms, we might expect a 
negative correlation between ET and |δ| (the absolute value of delta)—the higher the ET, the lower the |δ|. 
 In fact, there was no evidence of such a direct relation. Exhaustive examination of correlations (non-parametric 
Spearman, rho(A, |δ|), rho(B, |δ|), rho(C, |δ|), rho(AB, |δ|), rho(AC, |δ|), rho(BC, |δ|), rho(ABC, |δ|)) produced no 
significant results. 
 However, that does not erase the previous finding that graphical depictions took just 70% as much average viewing 
time, with no significant loss in PLD accuracy. 
  

Landings 
 
Visual Inspection of Landings 
 Figure 15 shows PLD difficulty ratings grouped by Depiction Type (A1-A2, by rows), Objective Difficulty (B1-B3, within 
each figure), and by Time Constraint (C1-C4, by columns). Figure 15 makes it easy to see individual landings, which are 
represented by a circle around each difficulty rating. Being able to see individual landings makes it easy to spot the 
tendency to land during Easy scenarios, as well as misclassifications in PLD ratings, and appropriate-vs.-inappropriate 
landings. 
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Figure 15. Perceived Landing Difficulty and Landings, both  × Objective Landing Difficulty (B1-3). PLD is represented by a dot on the 0-100 
scale. Dots with a circle represent landings. In theory, all Easy (B1) scenarios should have produced landings, while all Hard (B3) 
scenarios should have produced diversions or, at least, go-arounds. 
 
Appropriateness of Landings 
 Discriminating between easy and difficult winds. The decision whether or not to land is the ultimate cognitive conclusion 
a pilot can make about a report of runway winds. Ideally, pilots will land when the winds are within their skill range, and 
will not, otherwise. 
 Figure 15 makes salient which landing decisions were appropriate. All B1 Easy scenarios should have produced 
landings and all B3 Hard scenarios should not. Each of Figure 15’s eight panels shows objective difficulty (IV B) on its 
x-axis, versus perceived difficulty (PLD) on the y-axis. This highlights the variability in PLD produced by each ABC 
combination of IVs. The greater the range on y, the greater the variability of PLD. 
 Table 6 presents a summary of the same “landing appropriateness” data in “signal detection theory (SDT) format,” 
as if unacceptably high winds were a “signal” that can be detected or missed. This tells us whether pilots landed when 
they should have, and whether they diverted (or at least went around) when they should have. 
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Table 6. Appropriateness of landingsA for Easy (B1) vs. Hard (B3) scenarios, 
with data summed across level of time constraint (C). 

  Textual (A!)    Graphical (A2) 
  Did land    Did land 
  Yes No    Yes No  

Should have 
landed 

Yes (B1) 63B 5C 68  Yes (B1) 68 0 68 
No (B3) 16D 52E 68  No (B3) 15 53 68 

  79 57 136   83 53 136 
AGray cells denote appropriate response, either to land or not land. 
BEquivalent to a “Correct Rejection” in SDT, given no signal of “High Risk.” 
CEquivalent to a “False Alarm” in SDT. 
DEquivalent to a “Miss” in SDT. 
EEquivalent to a “Hit” in SDT. “High Risk” signal was correctly detected. 

 
 Table 6 shows us that, no matter what the data format (textual or graphical), most pilots appeared able to discrim-
inate between easy and difficult landing conditions (pFisher's exact = .016). They usually landed when landing winds were 
easy for them, and did not when winds were difficult.  
 The graphical depiction (A2) had slightly more correct responses than the textual depiction (viz., 68 graphical Cor-
rect Rejections6 vs. 63 textual, 53 graphical Hits vs. 52 textual). Unfortunately, we know of no appropriate statistic to 
analyze this exact format, given that each pilot’s 24 separate decisions were correlated. Therefore, we cannot formally 
state that the graphical format was significantly better than the textual format. Moreover, since we can see that the differ-
ences were relatively small, we should prudently conclude that the textual and graphical display were indistinguishable 
in “signal-detection ability” of easy-versus-difficult landing winds. 
 The challenge of intermediate-difficulty winds. If there is a challenge in displaying runway wind information, it seems that 
will involve trying to depict intermediate-difficulty winds. Watch for this theme to progress momentarily. 
 
Pilots’ Confidence in Their Decisions 
 Pilot Confidence in the quality of their decisions was measured on a 1-7 Likert scale after each scenario (see Fig. 7). 
Overall, the data were heavily skewed toward the high end of the scale. So, similarly to the Elapsed Time data, we collapsed 
the Pilot Confidence data by categories to yield averages-by-subject main effects for IVs A, B, and C. Even after such 
averaging the n=17 frequency distributions all failed Shipiro-Wilk with powerful significances ranging from 1.01* 10-7 to 
4.42* 10-14.  
 We therefore ran pairwise Wilcoxon tests. Table 7 shows group means and follow-up p-values and effect sizes 
(Cohen’s d). 
 

Table 7. Group means and significances, p-values for 2-tailed tests of correlated pairs. Wilcoxon 
tests highlighted yellow. All others are t-tests. 
 IV group means (Confidence-in-decision, 1-7 scale) 
 A1 A2 B1 B2 B3 C1 C2 C3 C4 
 5.13 5.99 5.88 5.26 5.53 5.75 5.64 5.60 5.25 

 
 Significances between IV pairs (and Cohen’s d) 
 A2 B2 B3 C2 C3 C4 
A1 1.74*10-13  (3.49)      
B1  8.41*10-8  (3.43) .001  (1.45)    
B2   .014  (1.10)    
C1    .251  (0.60) .265  (0.77) 1.25*10-4  (2.20) 
C2     .874  (0.19) .015 (1.68) 
C3      .011  (1.48) 

 
 Results for Depiction Type (IV A). Pilots had significantly more confidence in their landing decisions when using the graphical depiction 
than the textual depiction. Table 7 indicates a large main effect of textual (A1) versus graphical (A2) depiction, significant 
at pW= 1.74*10-5. Averaged across the entire 17 pilots, graphical depiction was rated as producing 0.86 points higher 
confidence-in-landing decision on a scale of 1-7. 

                     
6 If the signal is defined as “high risk due to winds”, then a Correct Rejection says “I detect no ‘signal.’ I therefore reject the no-
tion of great risk. I can land safely,” (and all that is correct because there truly is no signal). 
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 Results for Landing Difficulty (IV B). Pilots had the highest average confidence in their landing decisions during Easy landings (B1, 
5.88). They had the least confidence during Moderate landings (B2). This makes sense, since interviews with pilots afterward 
revealed that they found it relatively easy to quickly scan even a long column of numbers, as long as those numbers 
were either very small or very large. This was clearly a heuristic. And, intermediate wind values required the most mental effort 
because the heuristic could not be applied. 
 Results for Level of Time Constraint (IV C). As Table 7 and Figure 16 show, all pairwise comparisons showed the more 
time they had, the more confidence pilots had in their landing decisions. 

 
Figure 16. Pilots’ confidence in their decisions to land, go-around, or divert-to-alternate (y-axis) as a function of available viewing 
time (x-axis, log2 scale). Error bars show the 95% confidence interval. 
 
 Higher confidence was weakly-but-positively associated with correct landing decision. Despite the absence of any feedback given 
about their decisions (or, perhaps because of it), pilots’ confidence in their decision whether or not to land tended to 
match the eventual correctness of that decision, but not strongly so. Although we have no precise technique to measure 
these correlated data (because each pilot’s scores will tend to correlate with themselves, and are therefore not strictly 
independent), we can get a rough estimate by calculating a Spearman rank-order correlation, which yields r = .331 (p = 
.00000023) between pilot decision-confidence level (scaled 1-7) of each scenario and that scenario’s subsequent landing-
decision correctness (scaled 0-1). Only Easy and Hard scenarios are included in that estimate, since they were obviously 
designed to have correct outcomes (“should land” and “should not land,” respectively), whereas intermediate-difficulty 
scenarios were purposely designed to be equivocal.  
 Mindful of the limitations of that method, that correlation estimate would be classified as “modest” because the 
variance-explained (r2 = .11) is small, and the high degree of significance (p) is mainly due to the large number of 
measurements (n = 272). 
 Interestingly, if we then group the data by Depiction Type, pSpearman, Textual = .252, while pSpearman, Graphical = .432. A Fisher 
r-to-z transformation test (again, not technically appropriate) yields a one-tailed p = .048, suggesting that the graphical 
depiction may be better than the textual at linking confidence to correctness of landing decision. Once again, however, 
we cannot formally state such a conclusion, due to the statistical considerations mentioned. 
 
Pilot Opinions Concerning the Technology 
 All pilots were informally debriefed after finishing the testing session. The most salient aspect of their interviews 
was that every pilot— unanimously—expressed the opinion that he or she preferred the graphical depiction to the textual, and this was the 
same outcome noted in our previous experiment. We therefore now have two separate studies showing unanimous support for 
the graphical depiction of landing-wind information. 
 
Pilot Heuristics 
 Heuristics are simplifying rules used in decision making. Interestingly, a few pilots revealed to us their “trick” for 
assessing landing difficulty in the Easy and Hard textual scenarios. This was simply that they ignored the runway angle, 
and landed, if the wind speed values were very low, and diverted if the values were very high.  
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 This made sense with very low values, because trigonometry dictates that no separate wind component can ever be 
larger than the overall reported wind speed.7 So, if the overall speed is lower than the pilot’s personal minimums, the 
speed of its components has to be lower still, thus guaranteeing acceptable landing winds.  
 That approach was more of a gamble when applied to high reported wind speeds, though. If the overall wind speed 
was somewhat higher than a pilot’s personal maximums, they might also ignore the runway angle, and chose not to land. 
However, because the wind components’ speed would be lower than the reported overall wind speed, a safe landing 
opportunity might sometimes be missed. In signal detection theory, this would be equivalent to a false alarm (declaring 
detection of a signal of high risk when none was indeed present, box superscripted “C” in Table 6). And, indeed, we 
see five instances of that mistake in Table 6 for the textual depiction, versus zero for the graphical display. 
 The use of such methods is important for two reasons. Most importantly, we now know that at least some (if not 
most) pilots use heuristics, rather than trigonometry, in judging risk due to winds. Second, this needs to be a consider-
ation in designing this type of research (see section Suggestions for Future Research). It essentially means that testing 
very low or very high wind speeds is a waste of effort. 
 

B2 Results and Their Significance 
 
Modeling Pilots’ Risk-Evaluation Processes 
 Previously, we alluded to a special purpose for the Moderate-difficulty (B2) scenarios, namely that we wanted to 
gain some insight into how pilots cognitively process the graphical depictions in our scenarios. Appendix B provides 
detail. To quickly summarize, we constructed B2 scenarios to have Easy headwinds and Difficult crosswinds. And, we 
surmised that one of three cognitive risk-models would influence pilots’ perception of landing difficulty: 
 

1. A “conservative” one-factor model Pilot would pick the worse of either crosswind or headwind 
2. A “liberal” one-factor model Pilot would pick the better of either crosswind or headwind 
3. A two-factor model Pilot would factor-weight-and-sum the crosswind and headwind 

 
We hoped we might be able to distinguish which model was operating, on the basis of pilots’ B2 PLD scores. For 
instance, the “conservative” one-factor model should result in relatively high PLD, since pilots would have two risk 
values to choose from, and would always choose the larger. Therefore, even though the objective B2 score would be 
50, the perceived B2 scores would be closer to B3 scores. 
 
Comparing the Data to the Models 
 Indeed, this is precisely what we see in Figure 15. Note that, in every one of Figure 15’s eight panels, the middle 
arrow, which represents the B2 mean, is much closer to the B3 (Hard) mean than it is to the B1 (Easy) mean. The 
probability of this being true by chance for all eight means in Figure 15 is p = 1/28 =.0039. 
 Figure 17 shows this more dramatically, with the data simply grouped by difficulty level (B1-3). Note how the 
frequency distribution of Moderate scenarios (OLD = 50) far more resembles the Hard (OLD = 90) distribution than 
it does the Easy (OLD = 20) distribution. 
 

                     
7 The basic formula for triangles is sqrt(x2 + y2)= hypotenuse h (= stated wind speed, for our purposes). Implicitly, no component 
x or y can be larger than h. 
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Figure 17. PLD frequency distributions, grouped by scenario difficulty. This disconfirms the “liberal” one-factor model. 
 
 Examination of the 17 individual pilots in Table 8 shows that—for every pilot but #17—the mean of their B2 PLD 
scores was closer to B3 than it was to B1 (p = .00027, 2-tailed sign test). 
 

Table 8. Pilots’ individual mean PLD scores. The larger of B2 and B3 is highlighted gray. 
S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 mean 

B1 19.38 22.38 25.50 19.88 14.88 25.25 31.38 23.88 39.63 14.38 32.00 28.25 13.13 45.63 26.88 44.13 55.88 28.38 
B2 70.50 68.50 79.50 77.25 54.75 76.13 71.75 58.63 76.75 69.50 84.63 65.50 70.38 73.25 74.25 63.25 66.25 70.63 
B3 79.13 77.13 73.50 67.25 84.88 84.00 68.13 72.63 78.00 66.75 94.13 70.38 77.00 88.50 66.25 81.38 77.88 76.88 

B2 closer to B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B3 B2 B3 
 
 These experimental data clearly rule out the “liberal” one-factor cognitive risk model for the graphical depictions. 
Instead, they seem to support either the two-factor model weighted far more heavily toward the more-dangerous wind 
component, or the one-factor model, with the more-dangerous component considered exclusively.  
 The one caveat we need to present is that further research should be considered on this point. Because our B2 
scenarios always presented Easy headwinds and Hard crosswinds, an experimental design using all combinations of 
headwinds, tailwinds, and crosswinds should be considered (Easy+Easy, Easy+Hard, Hard+Easy, and Hard+Hard). 
Such a design would address the issue of the relative importance of crosswind-versus-headwind/tailwind components. 
 One conclusion is certain, however: On average, pilots tend to overestimate intermediate levels of risk a bit, in apparent 
compensation for their lower level of confidence about the true value of the separate wind components. 
 

DISCUSSION 
 
 This is the fourth in a series of studies aimed at developing an enhanced method to support in-flight pilot decisions 
by showing wind information on a mobile electronic device such as a tablet computer.  In doing so, we hoped to reduce 
an identified gap in the general pilot skill base, namely that calculating wind components requires excessively high cog-
nitive workload, leading to a safety risk.  
 The key to safe landing under windy conditions lies in accurate and timely assessment of runway wind components 
(headwind/tailwind and crosswind). “Accurate” means correctly assessing landing difficulty by estimating runway wind component 
speeds at the area of touchdown, within the context of the pilot’s individual level of skill and risk tolerance. “Timely” means that these 
estimates will be made as fast as good accuracy allows, and as near to the area of touchdown as safely possible. 
 
 In our previous (Phase 3) study, we discussed pilot perception of low-altitude runway winds as a speed-accuracy process. 
Pilots are trained to read information sources such as METARs, and extract wind components. As long as the necessary 
data are present, they try to accurately estimate those wind components to the best of their ability, no matter how long 
it takes. That study showed that they were reasonably adept at the task.  
 However, wind information depictions can vary in efficiency as well. Some depictions require more cognitive pro-
cessing than others. Ultimately, the Phase 3 study showed that, given equivalent levels of accuracy, a two-component graphical 
depiction was faster, and therefore more efficient, than the same information in textual form. 
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 As Figure 18a shows, the Phase 3 graphical wind depiction was quite sophisticated. It had two large arrows showing 
the runway-relative wind components and their speeds. This was designed to eliminate having to mentally estimate 
separate headwind/tailwind and crosswind components, or having to figure them from a chart. 
 

 
 a b 
Figure 18. a) the Phase 3 two-component graphical depiction, b) the enhanced Phase 4 graphical depiction, where green meant 
“This is within my personal comfort zone,” orange meant “This is where I start to hesitate,” and red meant “This is above and 
beyond my comfort zone.” 
 
 Figure 18b shows that the current Phase 4 depiction was even more sophisticated. Its two arrows were now color-
coded to represent risk scaled according to each individual pilot’s personal risk-tolerance and skill. 
 Additionally, Phase 4 was set up to investigate how limited viewing time might affect judgmental accuracy. How 
might performance change if pilots were sometimes given only a bare minimum of time to view the weather depictions, 
as often happens in real practice? 
 This Phase 4 study therefore manipulated three independent variables (IVs): 
 

 
 This 2×3×4 design therefore had 24 combinations, all shown to each pilot in repeated-measures format. The effects 
of those IVs were measured on three dependent variables (DVs): 
 

1. Speed 
2. Accuracy 
3. Confidence-in-estimate 

 
 Like the Phase 3 study, Phase 4 relied on creating landing scenarios with known objective landing difficulty (OLD). 
This OLD was different for each pilot, customized according to their level of skill and risk-tolerance. Then, during each 
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test scenario, based on the wind information shown to them, pilots reported their perceived landing difficulty (PLD). This 
allowed us to compute an error score by subtraction (PLD-OLD) representing the accuracy of risk judgment for every 
pilot on every scenario.  
 We also recorded how much time each pilot spent viewing each scenario’s weather information. That elapsed time 
(ET) became a proxy for cognitive processing speed. Decisions to land or not land were also recorded. And, lastly, we asked 
pilots to tell us their level of confidence in each of their decisions. 
 The Phase 4 data were far more complex and difficult to analyze and explain than Phase 3’s data. Phase 4 had more 
variability in responses, and more unexplained outliers in both the raw PLD and ET data. 
 
 Three main effects were examined regarding PLD. First, overall, textual depiction seemed to produce about as good 
average judgment of landing difficulty as graphical depiction (see Fig. 7 and Table 2, A1 vs. A2). However, averages did 
not tell the complete tale because the results of two relatively easy conditions to judge (low winds and high winds) were 
averaged in with one difficult condition to judge. This introduces the second point. 
 Second, intermediate-speed runway winds are the hardest to decide upon. Pilots could usually distinguish between easy landings 
and difficult ones (Table 2, B1 vs. B3) by using a simple heuristic requiring no mathematical calculation or chart lookup: 
“Land if the wind speed is very low. Do not land if it is very high.” But, intermediate-speed winds required thought and work. 
 Third, on the whole, available viewing time, from 40 seconds down to 5 seconds, exerted no significant effect on 
PLD. However—once again—the entire story went deeper than it first appeared. 
 
 The full story was, of course, much richer than merely main effects of PLD. First—as in Phase 3—graphical depiction 
was significantly more efficient than textual depiction. Graphical depictions took only 70% as much cognitive processing time 
compared to textual—with no penalty in accuracy (Table 5). Moreover, when available viewing time was severely con-
strained to just 5 seconds, pilots timed out significantly fewer times with graphical depictions (Fig. 14, 53 graphical 
timeouts vs. 75 textual). Both these results indicate higher graphical efficiency. 
 Second, graphical depiction produced significantly fewer misclassifications of landing difficulty than textual depiction (Table 4, 19 
vs. 56 misclassifications). 
 Third, graphical depiction ultimately produced fewer mistakes in deciding whether or not to land (Table 6). 
 Fourth, graphical depiction may produce higher pilot confidence in their landing decisions, particularly when available viewing time is 
severely constrained (Table 7). And, because those decisions may, indeed, be better, this higher confidence may be war-
ranted. 
 Fifth, pilots appear to employ heuristics (simplifying rules) when estimating risk due to runway winds. In textual 
depiction, especially when time is limited, pilots may ignore trigonometry and instead base their risk estimate as if the stated wind speed were 
the crosswind component. Similarly, in graphical depiction, pilots seem to focus on the more severe wind component as the limiting risk factor 
for that landing. Interestingly, both heuristics lead to overestimation of risk, and more conservative landing behavior, 
which is not necessarily a bad thing when safety is the goal. 
 Finally, pilots unanimously preferred the graphical depiction, both in this study, and the previous one. Unanimity of prefer-
ence is rare in product development, and manufacturers will take note of this. 
 

SUGGESTIONS FOR FUTURE RESEARCH 
 
 A number of suggestions present themselves for future research. First, since trend and variability information are 
critical to real-world assessment of landing difficulty, both could be explored by the method suggested in Figure 5. 
Namely, that information could be represented in the tails of the wind-component arrows. 
  Second, two approaches might help alleviate the problem of “regression to the mean” in the data frequency distri-
butions, which militated against the use of repeated-measures ANOVA in the current study. Focusing on graphic de-
pictions only, and then spanning the entire range of OLD with easy, moderate, and difficult scenarios (instead of just 
easy vs. difficult) would reduce the non-normality of PLD.  
 Finally, exploring further which kind of heuristic pilots use to determine intermediate-risk situations with graphical 
depictions would be interesting and useful, since this appears to represent a natural bias toward increased safety with 
this kind of display. 
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APPENDIX  A 
 

Computation of Objective Scenario Difficulty 
 

 In this experiment, scenario winds were constructed to be “Easy,” “Moderate,” or “Hard,” according to their Ob-
jective Landing Difficulty (OLD). The statistical challenge was to try to factor in each pilot’s individual levels of skill and 
risk-acceptance, so that any given scenario would subjectively feel equally as difficult to all pilots. That “normalization” 
of the difficulty level would then allow the repeated-measures ANOVA to calculate a separate mean score for each 
pilot, and thereby detect relative deviations from that individual mean—changes in our dependent variables supposedly caused 
by the different ways we presented the wind information (i.e., our independent variables). This is how RM-ANOVA is 
able to statistically control for “individuality,” by “using each subject as their own ‘control’,” resulting in very sensitive, 
powerful analysis. 
 The process of normalizing scenario difficulty began before testing, by collecting each pilot’s “Low Threshold” and 
“High Threshold” (see Fig. 4). The Low Threshold was defined as “a wind speed below which you wouldn’t worry 
about landing,” while the High Threshold was defined as a “value above which you would be hesitant to land.” 
 These two thresholds were then transformed to fit a normal 0-100 scale, according to the mapping equation 
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which guarantees that the Low Threshold (TLow) will map to 25 on the new scale, and the High Threshold (THigh) will 
map to 75. For example, if TLow = 4 and THigh  = 10, if x = 4 and 10, respectively, then 
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If x4-10 is halfway in between 4 and 10, then x4-10 = 7, and 
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 Now we also needed an inverse8 of Equation 1 to create working wind speeds for the experiment, and this was 
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so plugging, for instance, x0-100 = 25, 50, and 75 into Equation 2 where, again, TLow = 4 and THigh  = 10, 
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being the original values we started with.  
 Given the definition of “objective landing difficulty,” it now became possible to calculate δ, the estimate of pilot 
error at recognizing the objective difficulty, given a certain weather-information depiction. 
 

                     
8An inverse is a transformation that “undoes” some initial transformation. For instance, suppose some variable xold were trans-
formed by taking its square root, so that xnew = sqrt(xold). The inverse transform would then be the one that restores xnew back to 
xold,. So, that inverse would be the square of xnew, or (xnew)2 = xold. 
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Method of Generating Landing-Wind Scenarios 
 
Generation Algorithm 
 The present study used the same computational method (Eqs. 1, 2) as the previous study (Knecht & Dumont, 
2017). However, in the present study we mainly used two of the three wind-level difficulties (Easy and Hard) to test 
pilots’ reactions to the various winds. The third (Moderate) difficulty level was used to test cognitive models pilots might 
be using to estimate risk (discussed in the section B2 Results and Their Significance section, sub-heading Modeling Pilots’ Risk-
Evaluation Processes). 
 The three scenario difficulty levels were thus constructed as follows: 
 

1. EASY Easy headwinds, Easy crosswinds 
2. MODERATE Easy headwinds, Hard crosswinds 
3. HARD Hard headwinds, Hard crosswinds 

 
 Runway orientation was changed for each scenario, in order to force participants to analyze each scenario as unique. 
Runway orientations were randomly generated for 18 different compass directions, rounded to the nearest 10 degrees, 
with the north (360°), east (90°), south (180°), and west (270°) directions excluded as being too easy. The intent was to 
force participants to perform a different, non-trivial geometric transformation for each scenario. The same random 
runway orientations were used for each participant, but since their scenarios were in a different order, each combination 
of scenario and runway direction was unique. 
 As previously mentioned, each test began with the participant entering their low and high threshold wind speeds 
for headwind, tailwind, and crosswind. The application then calculated a wind speed and direction for every scenario. 
This was done by first calculating the wind vectors for the scenario difficulty, along the runway and perpendicular to 
the runway, then rotating those vectors for the random runway orientation of the scenario. 
 Tailwind landing conditions were excluded, based on the logic that the combination of tailwind and crosswind 
would introduce too much uncertainty into the pilot's decision-making, even despite the sufficiently long runway (8000’) 
described to participants. Therefore, headwinds were used for every scenario. The Easy headwind speed was set to a 
constant value, which was 20% below the participant's low headwind threshold. This resulted in a uniform “easy” wind 
vector along the runway axis. 
 Working values were set according to the difficulty of the scenario. For “easy” scenarios, the working crosswind 
speed was set at 20% below the participant's low normalized crosswind threshold.  
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For “difficult” scenarios, working crosswind speed was set at 20% above the high normalized crosswind threshold.  
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For “moderate” scenarios, working crosswind speed was set as the mean of the low and high thresholds. 
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 The direction of the crosswind was reversed for each Enhanced scenario in order to present a mirror-image runway-
relative wind direction as the corresponding Traditional scenario. Additionally, to create realistic variations in the Mi-
nutely scenario reports, each of the Minutely crosswind speeds st was perturbed along a normal distribution ranging 
above and below the calculated scenario value v., producing a range of .8v≤st ≤1.2v. 
 The calculated wind vectors were then combined into a runway-relative wind direction and magnitude before being 
rotated around the compass relative to the random runway orientation. This resulted in a unique north-relative wind 
speed and direction used for each scenario. The test was, then, to determine how quickly and accurately the participant 
could determine whether the given wind regime was easy, moderate, or hard. 
 
Controlling for Order Effects 
 Each odd participant (1,3,5…N-1) was assigned a pseudo-randomly ordered set of the 18 scenarios. Each even 
participant (2,4,6…N) was assigned a set of scenarios ordered the exact reverse of the previous participant. Therefore, 
S2’s presentation order was a mirror-image of S1, and so forth. This mirroring served to cancel any learning or fatigue 
effects that might cause later scenarios to be interpreted differently from earlier ones. All scenarios orders were pre-
generated and stored for later analysis, if needed. 
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APPENDIX B 
 

Modeling Pilots’ Risk-Evaluation Processes: B2 Results and Their Significance 
 
 The results stemming from responses to Moderate-difficulty (B2) wind speeds were actually designed to test a 
hypothesis about pilots’ mental risk models during processing of a wind display showing two components.9  
 We had first figured that each pilot would first more or less normalize the headwind and crosswind components—
meaning that whatever actual number they saw for a component on-screen, they would first mentally translate that into 
an internal “fear factor” based either on events having happened to them first-hand, or second-hand events (real or 
fictional) having happened to others, or perhaps on notions of risk gleaned from exposure to statistical information 
concerning accident frequencies and rates. 
  Second, we surmised that pilots would mentally rely upon one of three basic risk-model types. 
 

1. A “conservative” one-factor model Pilot would pick the worse of either crosswind or headwind 
2. A “liberal” one-factor model Pilot would pick the better of either crosswind or headwind 
3. A two-factor model Pilot would factor-weight-and-sum the crosswind and headwind 

 
 Here, the “conservative” one-factor model would result in the higher-than-nominal scores, because a pilot would 
have two risk values to choose from, and would always choose the larger. 
 To try to tease out which model was operating, we structured scenario difficulties according to this template: 
 

1. “Easy” (B1) scenarios always showed both headwinds and crosswinds as easy ( with mean objective landing 
difficulty = 20). 

2. “Moderate” (B2) scenarios always showed an Easy headwind and a Hard crosswind (with mean OLD = 50). 
3. “Hard” (B3) scenarios always showed both a Hard headwind and a Hard crosswind (with mean OLD = 90). 

 
In this manner, B2 could function as a discriminator. If pilots tended to greatly overrate their B2 PLD scores, that would 
support Model 1. Severe underrating would support Model 2. And, scores close to nominal would support Model 3. 
 

                     
9 Keep in mind that we presented no tailwinds, only headwinds. Nonetheless, there can only be either a tailwind or headwind—not 
both—so, the risk model would still always be two-component, even if we had presented tailwinds. 
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APPENDIX C 
 

Instructions Given to Pilots 
 

THANKS 
 
The National Center for Atmospheric Research (NCAR) and the FAA’s Civil Aerospace Medical Institute (CAMI) want to 
take this opportunity to thank you for agreeing to participate in this study. Without the help of pilots like you, we couldn’t do 
research like this. 
 

BACKGROUND 
 
This study is generally about how pilots gather weather information just prior to landing. Specifically, we’re studying low-
level winds today. Landings are always challenging and, of course, any significant wind going over the approach and runway 
makes them even harder.  
 
As you know, various aspects of winds such as speed, direction, variability, and trend normally present a particular challenge 
just at landing. 
 
This is the kind of information you want to get just prior to landing, and your goal, naturally, is to create a mental picture in 
your head of these winds and how to deal with them. 
 
Today, we’re going to test several different presentations on a mobile device to see how well they help you create these men-
tal pictures. This is not a test in the regular sense. There’s no “pass” or “fail,” you won’t be graded, and nothing goes into 
your Airman Record. So relax and enjoy yourself. This is a science experiment, and the goal is only to figure out easier, 
faster, and better ways to present wind info in the cockpit just before landing. 
 
Today we’ll ask you to imagine you’re flying the small GA aircraft you fly most. 
 
Then, we’ll show you 18 brief landing scenarios, one at a time. For some of these scenarios, you’ll be shown one type of 
weather-information presentation and, for others, a different kind of presentation. Both will be on an iPad (and we’ll spend 
plenty of time showing you how to make that work). 
 

 
 
In Question 1a, you’ll give us your best guess about how difficult this landing would be for you personally, in your usual GA 
aircraft. 
 
In 1b and c, you’ll tell us how easy—and then how difficult—it might be, given your experience of how weather sometimes 
changes during the last 10 minutes of approach. 
 
In Question 2, you’ll say whether you’d normally land, go around, or divert, given the report you see.  
 

Those are the basics. This thing is easy. We’ll go over it all in a little more detail in just a minute. Then, we’ll have a nice, 
thorough practice session before starting. 

Your job will be to gather weather info and make 4 short decisions about landing. 
 

1. Given the weather report you’ll see, 
 a) how hard would you expect the landing to be for you? 
 b) what’s the easiest it might be? 
 c) what’s the hardest it might be? 
2. Would you land at that airport, go around, or divert to an alternate? 
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INSTRUCTIONS 
 

1. First fill out your information on the Demographic Worksheet (and this is where you get your Participant ID num-
ber, so remember that number for Step 2).  

2. On the tablet, fill out your Test Information, including your Participant ID number and your personal “threshold” 
minimums and maximums for runway-relative wind components.  
•Remember, these numbers apply to the GA aircraft you fly the most.  
•“Low Threshold” means “below that speed = I wouldn’t worry about landing with that wind component.” 
•“High Threshold” means “above that speed = I’d feel nervous about landing with that wind component.”  
•What we’re really making is 3 range scales 

that look like this, → one for each wind com-
ponent  

 

 
•The app uses this to create custom test scenarios made specially for you. 

 
3. Look at the Sample Sheet, which has examples of each type of scenario you will encounter. You may keep the Sample 

Sheet to refer to at any time during the study. 
4. There’ll be 18 scenarios. 
5. For 9 you’ll use one kind of weather app on your iPad, for the other 9, you’ll use a second kind. 
6. We expect each scenario to take 2-5 minutes, but no hurry. Take as much time as you need. 
7. We’ll have a good practice session beforehand, so you can get comfortable with the setup. 
8. Here’s the setup:  

1. You’re flying the small aircraft you fly most often. 
2. No time pressure whatsoever. 
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3. You’re approaching an untowered airport, 15 minutes out. 
4. Dry, concrete runway, 100 wide, 8000’ long (i.e., not a problem). 
5. ASOS but no LLWAS 
6. To simplify things, today, don’t worry about wind variability or trend. Focus on wind speed and direction. 

9. Once you feel that you have a good understanding of the landing conditions, answer these 4 questions on that sce-
nario’s “Assess View” page. The first 3 you do by moving the 3 sliders on the “Expected Difficulty Scale” ( 
IMPORTANT: This scale is NOT “wind speed 1-100”. It’s “expected landing difficulty” 1-100, as explained on the 
Assess page. Very important). 
 

 
 

Don’t worry, we’ll practice all this ↑ 
 

PRACTICE 
 
The easiest way to understand what this study is about is to start by seeing a couple of practice scenarios. You can practice 
until you feel comfortable—and ask questions, too—so there’s no time pressure like with a pass/fail test. All we ask is that 
you go in “well-motivated,” meaning that you treat these situations with the same seriousness you’d treat an actual landing. 
 
Once you feel comfortable with the practice sessions and give us the go-ahead to start the experiment, over the next 60-90 
minutes, moving at your own easy pace, we’ll show you 18 short experimental landing scenarios, each one followed by a few 
brief questions. Again, these won’t be pass/fail situations, so relax. They’ll be more at seeing which weather presentations 
seem better for you, perhaps faster, or more accurate, or easier to understand.  
 


	Structure Bookmarks
	NOTICE 
	 


