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Introduction 

Commercial aviators and frequent flyers spend a large proportion of their time in flight, during 
which they are exposed to a mildly hypoxic environment due to the typical 8,000-ft (565 
mmHg) cabin pressurization of commercial aircraft (Pressurized Cabins, 2012; Muhm et al., 
2007). The total amount of oxygen (O2) available at this pressure is the equivalent of 
approximately 15% O2 at sea level. Exposure to increasing elevations, and thus decreased 
available O2, is known to induce Acute Mountain Sickness (AMS), an acute hypoxic condition 
typified by headache, weakness, nausea, and dizziness (Peacock, 1998; Roach et al., 2018), 
occurring with increasing frequency at higher altitudes. AMS is most often encountered by 
those who are not acclimatized to altitude; thus, infrequent flyers who live at lower altitudes 
are the most susceptible to experiencing AMS-like symptoms in flight. Altitude acclimatization, 
typified by an increase in hemoglobin and hematocrit, is an outcome of high-altitude exposure 
(Peacock, 1998; Wu et al., 2012) and has the physiological effect of enriching the amount of 
available O2 in the blood.  

Hypoxia stimulates a widespread transcriptional response centered on the hypoxia-responsive 
HIF1α protein. HIF1α, which is ubiquitinated and degraded at normoxia, is stabilized under 
hypoxia by hydroxylation of the O2-sensing proteins PHD and FIH1, after which it acts as both 
an activating and repressing transcription factor in concert with an array of cooperating 
proteins (Semenza et al., 1997; Majmundar et al., 2010). In addition to serving as a primary 
transcription factor, HIF1α also activates additional transcription factors, including FOS, CREB, 
CEBPB, NFY, MIF, FOXO3, and E2 (Dengler et al., 2013; Seifeddine et al., 2008; Sermeus & 
Michiels, 2011; Licht et al., 2006). Hypoxia also upregulates VEGF, ATM, and other factors 
leading to increased cellular growth, immune recruitment, angiogenesis, and inflammation 
(Majmundar et al., 2010; Olcina et al., 2014). This results from the cellular drive to cope with a 
lack of O2 by increasing glycolytic metabolism, mitigating the effects of reactive oxygen species 
(ROS) damage, increasing O2 perfusion, and ultimately increasing oxygenation through an 
increase in blood supply (Sarkar et al., 2003; Baze et al., 2010; Kaur et al., 2010; Burki & 
Tetenta, 2013; Srinivasan et al., 2015). 

Hypoxia, which induces a large-scale reallocation of cellular activities, is also known to induce 
changes in chromatin accessibility in several tissues (Melvin & Rocha, 2012). Mimura et al. 
(2012) found that HIF1α acts in concert with KDMA3 to demethylate lysine 9 of histone 3 at the 
target loci and serve to activate glycolytic pathways. Lee et al. (2017) discovered that both 
activating (H3K4me3) and repressing (H3K9me3 and H3K27me3) trimethylations of histone H3 
were altered in a gene-specific manner, and that transcription factor binding was enriched 
according to that change in chromatin state. Prickaerts et al. (2016) demonstrated an increase 
in both activating H3K4me3 and repressing H3K27me3 during severe hypoxia (< 1% O2), as well 
as deactivation of histone demethylases.  

Most published studies on chromatin alteration during hypoxia have relied on chromatin 
immunoprecipitation and chromatin immunoprecipitation sequencing (ChIP-seq) techniques, 
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which limit findings to the regions that bind the antibody or epitope used. The Assay for 
Transposase-Accessible Chromatin (ATAC-seq) is a method of examining global chromatin 
accessibility, using the euchromatic binding preference of the tagging Tn5 transposase to 
preferentially 'tag' nucleosome-free chromosomal regions and thereby assay the nucleosomal 
accessibility of the entire genome (Buenrostro et al. 2015). Thus, ATAC-seq may be used to 
globally examine changes in chromosomal accessibility according to condition, revealing 
nucleosome density along the entire genome. To determine the extent of change in chromatin 
accessibility during mild (15% O2) and severe (2% O2) hypoxia, we treated cultured human 
bronchial epithelial cells (HBECs) with a range of O2 concentrations for 16 hours and performed 
ATAC-seq and microarray-based gene expression analysis. The findings of this study will provide 
information to develop future work in biomarkers, aerospace medicine, and pulmonary 
research. It will also be of use in exploring hypoxia-related DNA accessibility and gene 
expression changes.  

Methods 

Cell culture and treatment 

HBECs were obtained from Lonza (Normal Human Bronchial Epithelium with Retinoic Acid, item 
CC-2540, lot 0000646466). All cells were collected from a single individual, identified as a 38-
year-old Caucasian male. The cells were grown in Lonza Bronchial Epithelial Growth Medium 
with Retinoic Acid (BEGM, Lonza, item CC-3171) supplemented with a Lonza Bronchial Epithelial 
Growth Medium BulletKit (Lonza, item CC-3170) at 37°C, 5% CO2 in a humidified growth 
chamber. Cells were started with 0.3 mL of primary culture and grown under the described 
conditions in 20 mL of medium until reaching 80% to 90% confluence, a period of 
approximately five days. The media was then removed, and cells were released from the flask 
with a pre-warmed Accutase solution (Sigma) and washed with 1X phosphate buffered saline. 
Cells were passed at 1:10 (2 mL of culture into 18 mL medium) into a new collagen-coated flask 
(50 mL), which was placed back into the growth chamber. This passage was also carried to 80% 
to 90% confluence and then passed again into a new flask at 1:10 using the previously-
mentioned procedure (for 4 to 5 days). The final flask was carried to 80% to 90% confluence (4 
to 5 days), after which the cells were trypan blue stained (100-µL 0.1% trypan blue into 400-µL 
cell suspension) and counted using a hemocytometer. One hundred thousand cells were 
aliquoted into each well of an O2-sensing six-well plate (Oxodish OD6, PreSens, Germany) with 2 
mL of BEGM and placed in the incubator to attach and resume normal activity for 24 hours. 
After 24 hours, an additional 1 mL of pre-warmed BEGM was added to each well, and the six-
well plate was placed in a humidified incubation box (Coy Laboratory Products, MI, USA) within 
a hypoxia chamber (Coy Laboratory Products, MI, USA) for 16 hours at either 20.8% (21pct), 
15% (15pct), or 2% (2pct) O2. O2 concentration in solution was assessed with a SensorDish 
reader (SDR-382, PreSens) set for one reading every 15 minutes for the duration of the 
treatment. Upon completion of the treatment, plates were removed from the humidity box but 
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kept in the hypoxia chamber to maintain the cells at the treatment O2 state while performing 
cleanup and nuclear extraction manipulations.  

ATAC-sequencing 

Forty thousand cells were removed from three of the six wells of the treatment plate after 
counting by hemocytometer and placed into individual 1.5-mL tubes for each replicate. Nuclei 
were extracted from each replicate according to Corces et al. (2017), an improved protocol 
designed to reduce the percentage of mitochondrial reads. Nuclei were then treated with Tn5 
transposase (Illumina Nextera DNA Library Kit) to selectively cut and label open chromatin 
regions with sequencing adapters. The tagged fragments were amplified with dual-indexed 
primers (i7 and i5 primers, Illumina Nextera Index Kit) using an optimized thermal amplification 
profile (72°C 5 m, 98°C 30s, (98°C 10s, 63°C 30s, 72°C 60s) x 11 cycles, 72°C 5m, 4°C forever) and 
then purified using a 1:1 ratio of Ampure XP beads. Index primer combinations were selected 
using Illumina sample pooling guidelines. The washed and purified sample was eluted in 23 µL 
of elution buffer (Qiagen) and pooled for sequencing on one high-output Nextseq 500 flowcell 
(Oklahoma Medical Research Foundation Clinical Genomics Core Facility), producing 2x75 
paired-end reads (2x75). ATAC-seq raw data were deposited into the NCBI Sequence Read 
Archive under bioproject accession number PRJNA 492498. 

Microarray analysis 

Affymetrix Human Transcriptome Array 2.0 (HTA 2.0) microarrays were used to analyze gene 
expression of the cellular population from the three wells of each six-well treatment plate not 
used for ATAC-seq. The entire cellular population for each well used in microarray analysis was 
suspended in 250 µL of Qiazol reagent (Qiagen) and placed at -80°C. Ribonucleic acid (RNA) was 
extracted from cellular samples using RNeasy mini kits (Qiagen) on the QIAcube® automation 
platform. RNA quality was assessed using RNA 6000 Nano kits (Agilent) on a Bioanalyzer 2100 
(Agilent). RNA sample concentrations were determined using a NanoDrop 2000. Then, RNA 
samples were amplified using the Affymetrix GeneChip® WT PLUS Reagent Kit (Thermo Fisher 
Scientific). The concentration of single-stranded complementary DNA (cDNA) produced by 
amplification was measured using a NanoDrop 2000. Single-stranded cDNA was fragmented, 
labeled, and hybridized (Thermo Fisher Scientific GeneChip® WT PLUS Reagent Kit and 
GeneChip® Hybridization, Wash, and Stain Kit) onto Affymetrix GeneChip Human Transcriptome 
Assay 2.0 microarrays (Thermo Fisher Scientific) for analysis. Microarrays were hybridized for 18 
hours, rotating at 60 rpm at 45°C. Chips were then washed and stained using two GeneChip® 
fluidics station 450 (Affymetrix) using protocol FS450-0001, per the HTA 2.0 microarray 
protocol. Stained and washed microarrays were scanned using a 7G GeneChip® Scanner 3000 
(Affymetrix). Microarray raw and normalized data were deposited in the NCBI Gene Expression 
Omnibus database under accession number GSE121773. 
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ATAC-seq differential peak analysis 

Raw fastq files were processed through the official Encyclopedia of DNA Elements ATAC-seq 
pipeline (Kundaje, 2020) using the following modifications from default parameters: adapter 
detection TRUE (using Illumina adapter sequence CTGTCTCTTATA), IDR=TRUE, peak selection p= 
0.01, pooled peak pval= 0.05. The pipeline output files used for downstream analysis were 
pooled narrowpeak bed files, pooled count-normalized BigWig files, and individual bam files. 
The union of the pooled narrowpeak files was obtained with the Bedops software package 
(Neph et al., 2012), and the resulting union bed file was converted to .saf format using a custom 
script for use as an annotation file during the read counting step. Feature counting was 
performed using the Subread package (Liao et al., 2013; Liao et al., 2014), including bam files 
derived from each biological replicate. The resulting feature counts table was counts per 
million-normalized (CPM) using the R/edgeR software package and filtered to eliminate rows 
with normalized read sums of less than two across the row. The differential expression 
threshold was set at a false discovery rate of < 0.05 (Benjamini-Hochberg). Top differentially 
expressed genes for each contrast were determined according to the following criteria: log2 
fold change (LFC) >|0.5| and false discovery rate (FDR) < 0.05 (Benjamini-Hochberg adjusted p-
value, R/edgeR 3.7 software, Robinson et al., 2010; McCarthy et al., 2012). Differential 
expression was assessed across the following contrasts: 15pct - 21pct (15v21), 15pct - 2pct 
(15v2), 2pct - 21pct (2v21). These contrasts allowed the intuitive observation of upregulation 
and downregulation according to the severity of the hypoxic state. BEDTools (Quinlan, 2014) 
intersect was used to extract peak intersections for ATAC-seq:Microarray comparison, BEDTools 
subtract was used to extract unique peak lists for each treatment. Peak annotation was 
performed using Hypergeometric Optimization of Motif EnRichment (HOMER, Heinz et al., 
2010) annotatePeaks.pl script with the current hg38v21 annotation file. Read densities were 
visually examined using BigWig and bam files in Integrated Genome Viewer (IGV, Robinson et 
al., 2011; Thorvaldsdottir et al., 2013) 

The Fraction of Reads in Peaks (FRiP) was calculated by comparing the total number of filtered 
reads mapping to each peak in the merged peak file by DeepTools (Ramírez et al., 2016). 
DeepTools was used to generate heatmaps (computeMatrix and plotHeatmap) on gene sets 
representing unique peaks, differentially expressed peaks, observed transcription start sites, 
and all annotated genes in the hg38.v21 human genome annotation .gtf file. 

Motif analysis 

Unique peaks in each treatment were processed through the HOMER software package (Heinz 
et al., 2010) to discover motif enrichment (using the perl script findMotifsGenome.pl, with the 
21pct treatment as background to compare 15pct and 2pct (15v21, 2v21), and 2pct treatment 
as background to compare 15pct treatment (15v2). HOMER v4.10 (Heinz et al., 2010) was also 
used to annotate peaks derived from the initial peak-calling pipeline (annotatePeaks.pl). The 
motif search was limited to 200 bases upstream and downstream from the peak center to 
analyze the proximity of peaks to genome features.  
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Microarray bioinformatics analysis 

Microarray bioinformatics analysis was conducted using the Affymetrix Transcriptome Analysis 
Console (TAC, Affymetrix), a proprietary software package that uses the R package limma 
(Ritchie et al., 2015) to conduct differential expression analysis of microarray data. Raw .cel files 
were imported into the software analysis space and the following contrasts set: 15pct - 21pct 
(15v21), 15pct - 2pct (15v2), and 2pct - 21pct (2v21). Analysis settings were as follows: Probe 
Detection threshold requirement was 50% of samples expressing at least 5% above 
background, Area Under Curve (AUC) threshold 0.7, genome hg19, annotation HTA-
2_0.r3.na36.hg19.a1.transcript.csv, and Map file HTA-2_0_MappingFile.r1.map. Also, RMA-SST 
normalization and transformation were used to normalize .cel files, gene-level FDR threshold 
was set to 0.05, and Ebayes analysis of variance was the statistical comparison method. 
Microarray quality assessment and differential expression analysis were performed within TAC. 
The quality assessment consisted of examining labeling and hybridization control probe 
intensities, positive vs. negative AUC, and signal box plots were used for raw and normalized 
signal intensities. All plots were generated in TAC. 

Determining microarray-ATAC peak concordance 

To relate chromatin accessibility to gene expression, we isolated the significantly differentially 
expressed (DE) promoter-transcription start site (TSS) localized peaks from each comparison 
and compared their chromosomal locations to the chromosomal coordinates of each 
significantly DE gene annotation from corresponding microarray analysis. First, as the 
microarray-derived chromosomal coordinates were based on the hg19 genome, the 
coordinates were converted from hg19 to hg38 using the web-based NCBI Genome Remapping 
Service (https://www.ncbi.nlm.nih.gov/genome/tools/remap). Then, to capture peaks binding 
upstream of the transcription start site, we extended each microarray-derived chromosomal 
location by 3,000 bases upstream. Each coordinate file was compared using BEDTools intersect, 
which determined areas of intersection between each file. The resulting intersections were 
then annotated using the HOMER annotatePeaks.pl script.  

Results and Discussion 

ATAC-seq  

To assay variation in chromatin accessibility in identical populations of bronchial epithelial cells 
according to O2 availability, bronchial epithelial cells from a single individual under three 
different O2 regimes: 21.8% (21pct), 15% (15pct), and 2% (2pct), as measured in solution. The 
treated cells were harvested and subject to Omni-ATAC-sequencing, a modified ATAC-seq 
protocol designed to reduce mitochondrial DNA contamination of the sequencing read pool 
(Buenrostro et al., 2015; Corces et al., 2017). ATAC libraries were sequenced to a depth of 
approximately 70 to 90 million paired-end reads per replicate after quality filtering, including 
filtering by read quality, mapping quality, duplication, and mitochondrial mapping (Table 1).  

https://www.ncbi.nlm.nih.gov/genome/tools/remap
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Table 1  
ATAC-sequencing and Quality Metrics 
Treatment_Rep 2pct_1 2pct_2 2pct_3 15pct_1 15pct_2 15_pct_3 21pct_1 21pct_2 21pct_3 
Total Reads 69,136,462 73,555,984 68,148,932 90,661,196 92,953,290 88,259,166 77,670,220 76,363,386 77,602,234 
Pct Mapped (Not 
Filtered) 

99.60 99.63 99.70 99.67 99.61 99.66 99.65 99.63 99.66 

Filtered Reads 49,992,082 49,788,704 48,762,496 56,900,854 46,039,854 42,901,538 60,965,232 61,250,378 62,293,586 
Pct Mapped 
(Filtered) 

100 100 100 100 100 100 100 100 100 

Mitochondrial 
Read Percentage 

10.1 15.3 11.7 21.4 36.3 37.7 2.2 0.8 1.3 

Non-Redund. 
Fraction 

0.98 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97 

PCR Bottleneck 
Coefficient 1 

0.97 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97 

PCR Bottleneck 
Coefficient 2 

41.82 39.49 38.44 36.32 31.95 33.78 23.90 32.70 34.48 

TSS Enrichment 7.12 7.50 4.74 7.63 11.34 11.02 8.11 4.86 3.93 
NFR/MonoNuclear 
Reads 

3.23 3.77 3.91 3.42 4.37 4.34 2.54 4.49 4.17 

Fraction of Reads 
in NFR2 

0.64 0.67 0.67 0.64 0.68 0.69 0.57 0.69 0.66 

Median Fragment 
Size1 

500 500 500 462 462 462 471 471 471 

Reads Mapped to 
Peaks 

5,594,886 5,966,360 4,362,382 8,829,612 10,628,924 9,641,166 8,850,074 5,670,842 5,469,034 

% Mapped to 
Peaks (FRiP)* 

11.19 11.98 8.95 15.52 23.09 22.47 14.52 9.26 8.78 

1. Median Fragment size calculated per treatment. 2. Nucleosome-Free Regions. This statistic details the fraction of reads mapping to 
nucleosome-free regions, which are constitutively open-chromatin regions. *Percentage of reads mapped to union peak file. 

Note. ATAC = Assay for Transposase-Accessible Chromatin; FRiP = Fraction of Reads in Peaks; NFR = Nucleosome-free region; pct = percent; 
PCR = polymerase chain reaction; TSS = transcription start site.  
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Fastq quality control reduced the number of reads by approximately 20%, and 100% of the 
filtered reads in each replicate mapped to the human genome (hg38 v21). Between 8.78% and 
23.09% of the filtered sequencing reads in each replicate mapped to the union peak list. The 
percentage of reads mapping to the union peak list was uniformly greater in the 15pct 
treatment than in the 2pct or 21pct treatments, as was the percentage of mitochondrial reads 
(Table 1). Mitochondrial reads exhibited low proportions in all samples but were lowest in the 
21pct O2 samples (2.2% to 0.8% of total reads, Table 1). This low percentage of mitochondrial 
reads was independently confirmed by running a second set of 21pct replicates from an 
additional individual (data not shown), not included in further analyses due to its divergent 
genotype. Tiede et al. (2011) found that cytoplasmic mitochondrial fractions rise, but 
mitochondrial activity decreases as O2 levels decrease. Thus, the increase in mitochondrial 
reads observed in the present study may result from an increase in the mitochondrial fraction 
under the 15pct and 2pct O2 treatments. 

Peak Calling and Differential Peak Expression Analysis Reveal Chromatin Accessibility 
Differences Between Oxygen Treatments 

Peak calling was performed with Model-based Analysis of ChIP-Seq (MACS2) software, narrow 
peaks were assessed by comparing all replicates for each treatment and determining the 
treatment-specific consensus peak set. Peaks (chromosomal regions with read density 
significantly above background) were identified using a p-value cutoff of < 0.01. Each treatment 
produced different numbers of called peaks; the 21pct treatment yielded 135,098 peaks, the 
2pct treatment yielded 124,718 peaks, and the 15pct treatment produced 176,085 peaks. 
Annotation of these peak files using the annotaterPeaks.pl script from the HOMER software 
package showed that the annotation profiles were largely equivalent for all treatments, with 
the greatest percentage of peaks in each treatment being located in intergenic or intronic 
regions (Figure 1). The percentage of peaks lying within promoter regions was greatest in the 
2pct treatment (15%), followed by the 21pct treatment (14%), and finally by the 15pct 
treatment (12%). The 2pct treatment also displayed a larger percentage of peaks lying within 5' 
untranslated region (5' UTR) regions (2%) than either of the other treatments (1% each). The 
2pct treatment had fewer peaks lying within non-coding RNA (ncRNA) regions (< 0.5%) than 
either the 21pct or 15pct treatments. The remaining classifications had identical or very similar 
peak allocations. 

Peaks unique to each treatment and in common to all were determined using BEDTools 
subtract. The 21pct treatment produced 19,029 unique peaks, the 15pct treatment produced 
47,782 unique peaks, the 2pct treatment produced 20,172 unique peaks, and all treatments 
shared 97,924 peaks in common. Examination of the consensus peak intensity (BigWig) signals 
produced from each treatment (Figure 2) reveals that these unique peaks exist in each 
treatment, but at a sub-significant level. Globally, individual ATAC peak intensity varied little 
between treatment (Figure 2A). Viewed individually, however, differences in peak height were 
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visible. A selection of significant promoter-localized DE peaks for each treatment revealed 
apparent differences in peak intensity between the treatments (Figure 2B). 

 

Figure 1. Distribution of peaks among gene features in consensus peak lists for each treatment. 

The genomic location of each peak in the consensus peak lists for the 2pct, 15pct, and 21pct 
conditions were determined by the HOMER software package using the annotatePeaks.pl script. The 
majority of peaks in all conditions are located in intergenic and intron regions in each case. The 
proportion of peaks located in promoter and 5' UTR regions was greater in the 2pct treatment than 
the 15pct or 21pct treatments. A. Distribution of 124,718 called peaks in cells treated at 2pct O2. B. 
Distribution of 135,098 called peaks in cells treated at 21pct O2. C. Distribution of 176,085 called 
peaks in cells treated at 2pct O2. TTS = Transcription Stop site, pseudo = pseudogene, ncRNA = non-
coding RNA, 5UTR = 5’ untranslated region, 3UTR = 3’ untranslated region, miRNA = microRNA, 
Promoter = promoter localization combined with TSS localization. 

Consensus peak sets for each treatment were then used as input to produce a union peak set 
by determining the union of each peak set, resulting in a file with 184,907 individual peaks 
(Supplementary Table 1). It should be noted that the absence of a called peak in a given 
consensus file does not denote the absence of within the peak region, as reads map to each of 
the noted regions in all samples, although their incidence does not rise significantly above 
background (Figures 2B and C). Filtered reads from each replicate were mapped against the 
union .bed file to determine the expression of each peak and also the extent of differential 
expression between treatments. The union peak file was converted to a .saf annotation file by a 
custom script, which was used for feature counting by the Subread software package. The 
resulting feature counts table of raw read counts per peak location was used as the basis to 
determine differential expression between each treatment (R/edgeR).  

To determine significant differences in chromatin accessibility between treatments, we CPM-
normalized and contrasted the treatments using the Subread-generated feature counts table 
with the R/edgeR package (Supplementary Table 2). As the significance of each peak against the 
background of each treatment was established in the initial peak calling process, only six peaks 
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were eliminated by introducing an additional filtering requirement of a row sum of at least two 
for each peak among the CPM-normalized reads. The specific contrasts were 15v21 (15pct 
minus 21pct), 15v2 (15pct minus 2pct), and 2v21 (2pct minus 21pct). Thus, we used the 
normoxic 21pct as the basis for comparison with the two hypoxic treatments, and then 
examined the true change in expression in the 15pct treatment in comparison to the 2pct 
treatment (15v2).  

 

Figure 2. Visualization of peak distribution and read density according to genomic coordinate. A. 
Distribution of called peaks within the entire human genome (hg38). Chromosomes (1-22, X, and Y) 
are represented atop the chart. B. Visualization of read density (bigwig files) for each treatment at 
DE peaks. DE in 15vs21 comparison: lncRNA NR_125975, MTRNR2L1, MTRNR2L8. DE in 15v2 
comparison: CROCCP2, GIMAP7. DE in 2v21 comparison: lncRNA LOC643406. C. Distribution of reads 
within bases 26,000,000 to 28,000,000 of chromosome 6, a region containing histone genes 
upregulated under 15% O2 treatment. Peaks = peaks within combined peak file for all treatments 
(union peak file). Genes = binned density of annotated genes within each indicated chromosome. 
21pct, 15pct, and 2pct (In Figure 2A)= binned density of called peaks within each treatment at all 
chromosomes. 21pct, 15pct, and 2pct (In Figure 2B and C)= density of reads within each treatment 
at indicated locations (scales within each image are identical). 

The similarity of log-CPM normalized counts among treatments and replicates was examined 
using multi-dimensional scaling (MDS, similar to principal components analysis) using the 
R/edgeR software package (Figure 3D). Each of the three replicates for all treatments localized 
together, although the 15pct and 21pct treatments each displayed one replicate that lay apart 
from the other two, but still closer to their treatment group than to any other treatment group. 
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This was also reflected in the variability between replicates in Table 1. As the replicates grouped 
together, the decision was made to retain all replicates and proceed with further analysis.  

R/edgeR analysis of differential chromatin accessibility (Table 2, Figure 3A-C, Figure 4A) 
between O2 conditions revealed that the 15pct treatment elicited the greatest change in 
chromatin accessibility from the 21pct state, with a bias toward decreased chromatin 
accessibility (7,822 upregulated peaks, 17,998 downregulated peaks; Supplementary Table 3). 
The 15pct treatment displayed a similar relationship with the 2pct treatment, with 10,587 
upregulated and 22,354 downregulated peaks (Supplementary Table 4). However, contrasting 
the 2pct and 21pct treatments revealed the upregulation of only 43 peaks and downregulation 
of 26 peaks (Supplementary Table 5).  

 

Figure 3. MA plots examining contrasts between each treatment and principal component analysis 
of all log-CPM normalized datasets for each treatment. A-C. MA plots of average expression (log 
CPM) of each peak in union peak list vs. log fold change of each peak according to the indicated 
contrast. A. 15pct treatment vs 21pct treatment. B. 2pct treatment vs 21pct treatment. C. 15pct 
treatment vs. 2pct treatment. D. PCA plot of log-CPM transformed feature counts for each called 
peak.  

In examining peak chromosomal localization within genomic features, we determined that the 
majority of DE peaks among all contrasts lay within introns or in intergenic regions (Table 2). 
These DE peaks were largely downregulated in the 15pct treatment in comparison with both 
the 2pct and 21pct treatments. Intergenic and intronic DE peaks were generally upregulated in 
the 2pct treatment when compared to the 21pct treatment. The next-largest percentage of DE 
peaks in each contrast were localized to promoter/TSS regions. The majority of DE 
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promoter/TSS-localized peaks were upregulated in the 15pct treatment in contrast with the 
21pct (791 up, 278 down) and 2pct (615 up, 579 down) treatments, and also upregulated in the 
2pct vs 21pct contrast (10 up, 0 down). The 10 upregulated promoters in the 2pct vs 21pct 
contrast belonged to the genes MTRNR2L1, ENO-AS1, AGRN, KIF13A, ADAMTS20, RCOR2, CMIP, 
ZNF84, LOC101928626, and the unannotated NR_039666 (previously annotated as MIR4461, 
but removed and permanently suppressed by NCBI due to its removal from the micro RNA 
(miRNA) database miRbase due to RNAseq evidence that it is not an miRNA). Of the significantly 
more-accessible promoters in the 2pct treatment, only two have known roles in hypoxia; the 
anti-apoptotic MTRNR2L1 (Yen et al., 2013) and the HIF1α-binding RCOR2 (Ortiz-Barahona et 
al., 2010). 

 

Figure 4. Venn diagrams of ATAC-seq and microarray differential expression results. A. ATAC-seq DE 
peak Venn diagram. B. Microarray DE gene Venn diagram. Contrasts are indicated for each peak or 
gene pool. 

The global decrease in chromatin accessibility among DE peaks in the 15pct treatment in all 
comparisons suggests a large-scale chromatin rearrangement at 15% O2. In contrast, the lack of 
significant difference between the 21pct and 2pct treatments suggests that the strong 
activation of a select subset of genomic locations may act to avoid the necessity for such large-
scale rearrangement. Further, the absence of known hypoxia-mediating locations from the 10 
upregulated promoter regions in the 2pct vs. 21pct contrast suggests that hypoxia-regulated 
locations may be constitutively accessible in bronchial epithelium. The accessibility decrease 
observed in the 15pct treatment also demonstrates that differential expression is not 
dependent on peak calling. If unique peaks in each treatment were always significantly 
upregulated only in the treatment of origin, most of the upregulated peak set in each treatment 
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would consist of its unique peaks, and most downregulated peaks in each peak set would 
consist of peaks unique to the other two treatments. This was not observed, suggesting that 
the changes seen herein are valid.  

ATAC-seq Signals Display Differences According to Expression 

To examine chromatin accessibility within transcription start sites, we isolated a TSS list with at 
least one called peak within 1,000 bases up- or down-stream of that TSS (n= 13,925). 
Examination of consensus BigWig signals from each treatment (Figure 5) revealed a globally 
stronger signal in the 15pct treatment (Figure 5A). This data coincided with the observation 
that transcription start sites were preferentially upregulated in the 15pct treatment (Table 2).  

 
Figure 5. Heatmaps examining consensus read distribution within 1,000 bases of transcription start 
sites and within 1,000 bases of each differentially expressed peak for each indicated contrast. 
Intensity scales are located to the right of each heat map. A. Peak distribution within 1,000 bases of 
all observed transcription start sites. B. Distribution of read density around DE peaks in 2pct vs. 
21pct contrast. C. Distribution of read density around DE peaks in 15pct vs. 2pct contrast. D. 
Distribution of read density around DE peaks in 15pct vs. 21pct contrast.  

To examine the distribution of peaks in relation to gene features, we extracted all gene 
coordinates (n= 50,381 individual genes) from the hg38.p12 annotation file 
(gencode.v28.annotation.gtf) and mapped consensus BigWig peaks along each gene (Figure 6) 
with and without k-means clustering (clusters set to 3 to capture potential unique peak  
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Table 2 
Differentially Expressed Peaks in ATAC-seq Comparisons According to Genomic Location 
Annotation 15v21 15v2 2v21 

 Peaks % of Peaks Up Down Peaks % of Peaks Up Down Peaks % of Peaks Up Down 
Non-coding 193 0.8 64 129 234 0.7 79 155 0 0.0 0 0 
Intergenic 12,534 48.5 3,155 9,379 15,727 47.7 4,346 11,381 32 46.4 17 15 
Intron 10,891 42.2 3,478 7,413 14,228 43.2 5,160 9,068 20 29.0 14 6 
TTS 292 1.1 138 154 388 1.2 172 216 5 7.3 1 4 
Exon 590 2.3 81 509 838 2.5 82 756 1 1.4 1 0 
Promoter-TSS 1,069 4.1 791 278 1,194 3.6 615 579 10 14.5 10 0 
3' 171 0.7 61 110 218 0.7 89 129 0 0.0 0 0 
5' 80 0.3 54 26 114 0.4 44 70 1 1.4 1 0 
Total 25,820 100 7,822 17,998 32,941 100 10,587 22,354 69 100 44 25 
Note. ATAC = Assay for Transposase-Accessible Chromatin; TSS = transcription start site. 
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instances between treatments). Mapping signal intensities along gene locations did not reveal 
any noticeable difference in gene accessibility between treatments. K-means clustering also 
displayed no apparent differences between treatments within clusters. Signals were split 
broadly into three separate groups; the first displaying strong ATAC peaks only at the 
transcription start site, the second displayed whole-gene accessibility progressing to peaks 
centered around the transcription start site, and a third with weak ATAC signals scattered 
widely upstream and downstream of the transcription start site, progressing to a weak ATAC 
signal centered around the TSS. The lack of clear separation between treatments according to 
transcription start site peak localization showed that, on a large scale, the treatments have very 
similar chromatin profiles.  

 

Figure 6. Heatmaps examining gene body read density. All annotated genes from hg38v21 
annotation are represented. Intensity scales indicated at the right of each heatmap. 

Gene Expression Analysis by Microarray 

Microarray analysis was performed on cells from three wells of the original six-well treatment 
plates. One 21pct replicate failed the initial quality assessment and was excluded from further 
analysis. The remaining samples were hybridized on Affymetrix HTA 2.0 Human Transcriptome 
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microarrays, and the resulting data were analyzed using the Affymetrix Transcriptome Analysis 
Console using contrasts identical to those performed for differential ATAC peak detection. The 
15pct treatment yielded consistently higher expression among the majority of differentially 
expressed genes in contrast with the 21pct and 2pct treatments (Figure 7, Supplementary 
Tables 6 and 7). Eighty-seven percent (944 genes) of the 1,088 DE genes between the 15pct and 
21pct treatments were upregulated in the 15pct treatment (Figure 7A, Supplementary Table 6). 
Among the 1,622 DE genes between the 15pct and 2pct O2 treatments, 80% (1,285 genes) were 
upregulated in the 15pct treatment (Figure 7C, Supplementary Table 7). Notably, many fewer 
DE genes (n=43) were noted when contrasting the 2pct and 21pct treatments, with 19 genes 
upregulated and 24 genes downregulated in the 2pct treatment when compared with the 21pct 
treatment (Figure 7B, Supplementary Table 8). Interestingly, the 15pct treatment demonstrated 
the significant upregulation of 38 histone genes in the 15v2 contrast and 22 histone genes in 
the 15v21 contrast. This finding provides supporting evidence for the observation of a large 
decrease in chromatin accessibility in the 15pct treatment, and an explanation for the increase 
in called peaks and fraction of reads in those peaks in the 15pct treatment when each 
treatment contained very similar numbers of filtered reads.  

 

Figure 7. Microarray gene expression measurement contrasted according to treatment. A. Volcano 
plot examining -log10 p-Value vs. fold change of expression in 15pct vs. 21pct contrast. B. Volcano 
plot examining -log10 p-Value vs. fold change of expression in 2pct vs. 21pct contrast. C. Volcano 
plot examining -log10 p-Value vs. fold change of expression in 15pct vs. 2pct contrast. D. 
Unsupervised hierarchical clustering by expression value for differentially expressed genes across all 
treatments. Key and intensity scale located at the right of the chart. 
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Comparisons of the DE genes generated by each contrast (Figure 4A and 4B) revealed that only 
one gene, angiopoietin-like 4 (ANGPTL4), an angiogenic lipoprotein lipase inhibitor regulating 
fatty acid transport to cells (Gusarova et al., 2018), was declared significant in all comparisons; 
downregulated in both 15pct contrasts, but upregulated in the 2v21 contrast. The 15v2 
contrast found 586 DE genes not observed in any other comparison, 1,014 in common with the 
15v21 contrast, and 21 in common with the 2v21 contrast. The 15v21 contrast contained 71 
significant DE genes not shared with any other contrast and shared two significant genes with 
the 2v21 contrast. The 2v21 contrast contained 19 unique DE genes. The 1,014 shared DE genes 
between the 15v2, and 15v21 contrasts may be specifically regulated by mild hypoxia; the 586 
and 71 unique genes in either 15pct contrast may be due to genes specifically responsive to 
severe hypoxia (in the 15v2 contrast) and mild hypoxia (in the 15v21 contrast). The 19 unique 
genes in the 2v21 contrast may be responsive specifically to severe hypoxia. 

Concordance Between Differentially Expressed Genes and Peaks Reveals Upregulation of 
Histones in 15pct Treatment 

To establish concordance between the DE ATAC-seq peaks and microarray-assessed DE genes, 
we determined the intersecting genomic coordinates of those DE peaks and genes in each 
dataset. Chromosomal coordinates of promoter/TSS localized peaks from each comparison 
were compared to the chromosomal coordinates of each significantly DE gene annotation from 
corresponding microarray analysis. Comparing the 2v21 DE peaks and DE genes resulted in one 
intersecting region, in the intergenic region 4,956 bases downstream of the DE gene NFΚBIA 
(Supplementary Table 9). NFΚBIA (NFκB Inhibitor Alpha) is directly involved in the hypoxia 
response, supporting the observation that hypoxia is downregulated (LFC, -1.02) in the 2pct 
treatment. As NFΚBIA inhibits the pro-inflammatory and hypoxia-upregulated NFκB (Rao et al., 
2011; Li, et al., 2017) during hypoxia, its downregulation may signal an increase in the ability of 
HIF1α to mediate the hypoxic response at 2% O2. 

Examining the concordance between the 15v21 ATAC-seq and Microarray DE datasets yielded 
162 intersecting regions within 105 individual genes (Table 3, Supplementary Table 10). The 
majority of concordant peaks were associated with intergenic regions (31.3%), followed by 
promoter-TSS and intron regions (each 28.8%) and low numbers of TTS, exon, 5'UTR, 3' UTR, 
and non-coding designations. Of the 47 intersecting peaks localized to promoter regions, 11 fell 
in histone genes (HIST1H2AD, HIST1H2AE, HIST1H2AG, HIST1H3B, HIST1H3I, HIST2H2AB, and 
HIST2H2AC). All the concordant histone peaks were upregulated in the 15pct treatment in both 
the ATAC-seq comparison and the microarray comparisons. Additional promoter-localized 
concordant genes of interest included SERPINE1, a hypoxia-upregulated molecule responsible 
for tissue remodeling and implicated in fibrosis (Muth et al., 2011) that was downregulated in 
the 15pct treatment in comparison to both the 21pct and 2pct treatments. PLXDC1 (referred to 
as uc021twq.1 in Supplementary Table 6), significantly upregulated in 15pct treatment, 
negatively regulates angiogenesis through binding PEDF (Cheng et al. 2014) and is thus 
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potentially involved in angiogenesis and in response to mild hypoxia, in agreement with the 
downregulation of ANGPTL4.  

Table 3 
Intersection between DE ATAC-seq Peaks and DE Genes 

 15v21 15v2 2v21 

Annotation Total Percentage Total Percentage Total Percentage  

intron 47 29.0 83 43.2 0 0  
Intergenic 51 31.5 52 27.1 1 100  

promoter-TSS 47 29.0 37 19.3 0 0  
TTS 12 7.4 15 7.8 0 0  

exon 2 1.2 2 1.0 0 0  
5' UTR 1 0.6 1 0.5 0 0  
3’ UTR 1 0.6 1 0.5 0 0  

Non-coding 1 0.6 1 0.5 0 0  
Gene Type  

ncRNA 37 22.8 40 20.8 0 0  

Protein-Coding 103 63.6 124 64.6 1 100  

Pseudogene 2 1.2 3 1.6 0 0  

snoRNA 6 3.7 10 5.2 0 0  

snRNA 13 8.0 14 7.3 0 0  

Not Annotated 1 0.6 1 0.5 0 0  
Note. ATAC = Assay for Transposase-Accessible Chromatin; DE = differentially expressed; ncRNA = 
non-coding ribonucleic acid; snoRNA = small nucleolar ribonucleic acid; snRNA = small nuclear 
ribonucleic acid; TSS = transcription start site; UTR = untranslated region.   

 

Comparing the intersection of the 15v2 datasets found 192 concordant DE peaks aligning with 
129 individual genes (Table 3, Supplementary Table 11). As in the other contrasts, the majority 
of concordant peaks were located within protein-coding genes, followed by ncRNAs, small 
nuclear RNAs, small nucleolar RNAs, and pseudogenes. Of the promoter-localized concordant 
peaks, nine were located within the promoter of the significantly upregulated histone genes 
HIST1H2AL, HIST1H2BI, HIST1H3C, HIST1H4L, HIST1H3H, HIST1H3B, and HIST2H2AB, all located 
on chromosome 6, except HIST2H2AB and HIST2H2BF, located on chromosome 1 (Figure 2C). 
The large-scale upregulation of histone genes in the 15pct treatment compared to both the 
normoxic and hypoxic conditions further confirmed the observed decrease in chromatin 
accessibility in the 15pct treatment. Visualization of the chromatin accessibility profiles of 
Chromosome 6:bases 26,000,000 to 28,000,000, where the majority of the concordant histone 
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genes are located, confirmed the increased accessibility of each histone gene contained within 
this region in the 15pct treatment (Figure 2C). 

Thus, the microarray and ATAC-seq datasets support one another. The observed pattern of 
large-scale changes within the 15pct treatment in comparison to the 21pct and 2pct treatments 
was seen in both analyses. While the majority of DE peaks were downregulated in the 15pct 
treatment in contrast with both the 2pct and 21pct treatments, most downregulated peaks 
were observed in intergenic and intronic regions, whereas DE promoter accessibility increased, 
signaling increased transcription. Accordingly, microarray analysis also indicated large-scale 
upregulation of DE genes in the 15pct treatment, particularly among histone genes, potentially 
signaling an increase in chromatinization. While the increase in FRiP and TSS enrichment in the 
15pct treatment was initially regarded with concern, our results suggest that these increases 
were the result of a widespread decrease in chromatin accessibility due to cellular growth at 
15% O2, with a resulting decrease in the percentage of the genome available for Tn5 
transposition. The increase in FRiP in the 15% treatment may have resulted from a global 
decrease in chromatin accessibility, "focusing" the tagging transposase on a restricted number 
of nucleosome-free sites and thereby reducing background. The increase in mitochondrial reads 
in the 15pct and 2pct treatments may have resulted from an increase in the mitochondria in 
hypoxia, as noted by Tiede et al. (2011).  

Pathway Analysis Predicts Downregulation of Proliferative Responses at 15pct O2 and 
Upregulation of Hypoxic Response at 2pct O2 

To examine the significance of microarray-assessed differential gene expression between 
treatments, we submitted the lists of differentially expressed transcript clusters (Log Fold 
Change > |1|, FDR <0.05) to Ingenuity Pathway Analysis (IPA) for Core Pathway determination. 
Many of the DE transcript clusters localized to ncRNA, miRNA, pseudogenes, and other 
regulatory regions (Supplementary Tables 6, 7, and 8), thus possessed insufficient functional 
information for IPA to include them in the analysis. The 15v21 contrast produced 322 analysis-
ready genes, the 15v2 contrast contained 475 analysis-ready genes, and the 2v21 contrast 
contained 32 analysis-ready genes.  

Pathway analysis predicted several up-and downregulated upstream effectors confirming the 
general gene and peak expression patterns observed in the ATAC-seq analyses, with a general 
downward trend in the 15pct treatment (Table 4). Notably, downregulation of HIF1α, a 
definitive hypoxia-responsive factor (Semenza et al., 1997; Belaiba et al., 2007), was predicted 
in the 15pct treatment with both the 21pct and 2pct treatments, based on the direction of 
change of downstream molecules. HIF1Α was not differentially expressed in any comparison; it 
approached significance (FDR= 0.0942; Supplementary Table 6) in the 15v21 comparison, 
although with a log fold change of only -0.26 (Figures 8A-C). The chromatin profile of HIF1Α and 
its associated antisense regulators HIF1αS1 and HIF1αS2 revealed large peaks in all treatments 
at the promoters of HIF1α and HIF1α-AS2, although the peaks were not significantly different 
among any comparison (Figure 8D). The activation of HIF1α was expected in both the 15pct and 
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2pct treatments, and thus the downregulation of HIF1α in the 15pct in comparison with the 
21pct treatment is surprising.  

 

Figure 8. Examination of predicted HIF1Α regulation and read density along HIF1Α and associated 
antisense transcripts. A. IPA-predicted increase in HIF1Α gene expression in 2pct treatment vs. 
21pct treatment. B. IPA-predicted decrease in HIF1Α expression in 15pct vs 2pct contrast. C. IPA-
predicted decrease in HIF1Α expression in 15pct vs 21pct contrast. D. Read density distribution 
within HIF1Α and associated antisense (AS) transcripts. HIF1Α was not among DE genes and had 
no associated DE peaks. 

Comparison of the 15pct and 21pct treatments resulted in 20 significantly changed regulatory 
molecules, of which only three were activated, again confirming the trends observed in both 
the ATAC-seq peak analyses. MAPK1, NEUROG1, and RARA were activated in the 15pct 
treatment, while the remaining factors, including HIF1Α, NFΚB, and ATM, were all implicated in 
the hypoxia response, were inhibited (Table 4). Of the increased regulators, only MAPK1 has 
displayed a clear role in hypoxia, increasing during intermittent and sustained hypoxia in rat's 
lungs (Wu et al., 2008). The role of NGN1 in hypoxia is less clear; NGN1 is downregulated by a 
decrease in NOTCH1 signaling, which is, in turn, upregulated by hypoxia (Gustafsson et al., 
2005). While NOTCH1 was not among the significantly changed regulators in the 15v21 
contrast, it was among the sub-significantly upregulated regulators in the 2v21 comparison 
(data not shown). 
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Table 4  
Significantly Changed Upstream Regulatory Molecules 

 
Upstream 
Regulator Molecule Type 

Pred. Act. 
State 

Activation z-
score 

p-value of 
overlap 

Mechanistic  
Network 

15v2 

PRKAA1 kinase Activated 2.20 6.65E-03 41 (6) 
DUSP1 phosphatase Activated 2.00 5.03E-03   
RICTOR other Inhibited -3.74 1.33E-07   
HIF1Α transcription regulator Inhibited -3.26 5.94E-06 45 (8) 
IL5 cytokine Inhibited -2.65 1.30E-03   
NUPR1 transcription regulator Inhibited -2.55 7.76E-13   
ARNT transcription regulator Inhibited -2.41 1.23E-04   
CD38 enzyme Inhibited -2.61 4.98E-04   
SYVN1 Transporter Inhibited -2.24 8.00E-03   
PGR lig-dep nuc. rec. Inhibited -2.21 1.90E-02   
ATF4 transcription regulator Inhibited -2.00 2.92E-02   
TGFB1 growth factor Inhibited -3.46 1.91E-04 48 (8) 
TLR9 transmembrane receptor Inhibited -2.00 1.12E-01   
ERBB2 kinase Inhibited -2.83 1.82E-03 24 (3) 
NEDD9 other Inhibited -2.83 1.21E-09 35 (6) 

2v21 
HIF1Α transcription regulator Activated 2.77 3.14E-10   
NEDD9 other Activated 2.44 8.94E-13   
STAT3 transcription regulator Activated 2.21 3.15E-05   

15v21 

NEUROG1 transcription regulator Activated 2.00 2.99E-04  
MAPK1 kinase Activated 2.00 1.70E-02  
RARA ligand-dependent nuclear 

 
Activated 2.24 2.91E-03  

JNK group Inhibited -2.28 4.06E-09 24 (16) 
NFκB complex Inhibited -2.18 3.97E-03 23 (9) 
ERK group Inhibited -2.93 9.55E-08 30 (16) 
RICTOR other Inhibited -2.34 1.61E-09   
CCND1 transcription regulator Inhibited -2.00 1.50E-02   
GPER1 g-protein coupled receptor Inhibited -2.20 6.95E-06 22 (11) 
HIF1Α transcription regulator Inhibited -2.22 2.80E-04 19 (8) 
NUPR1 transcription regulator Inhibited -2.50 2.94E-06   
ATM kinase Inhibited -2.18 4.58E-06 24 (13) 
EGFR kinase Inhibited -2.17 6.33E-03 27 (16) 
TNF cytokine Inhibited -2.49 7.28E-04 27 (14) 
CTGF growth factor Inhibited -2.17 3.65E-05   
TGFB1 growth factor Inhibited -3.60 2.18E-07 29 (11) 
RELA transcription regulator Inhibited -2.20 9.71E-05 27 (11) 
FOXO3 transcription regulator Inhibited -2.18 1.31E-03 10 (3) 
ERBB2 kinase Inhibited -2.83 2.31E-06 19 (4) 
IL1B cytokine Inhibited -2.06 6.78E-05 22 (13) 
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The 15v2 contrast, although showing the greatest number of DE genes, discovered fewer 
significant upstream regulators than the 15v21 contrast. Only two upstream regulators showed 
upregulation: PRKAA1 and DUSP1. PRKAA1 suppresses mTOR (Corominas-Faja et al., 2013), 
which is involved in the hypoxic cellular response (Wang et al., 2015), inducing a range of 
responses including cell growth and vascular remodeling under hypoxic conditions. However, 
differential mTOR expression was not indicated in any of the contrasts performed in this study. 
DUSP1 is activated by hypoxia and negatively modulates the activity of HIF1Α (Liu et al., 2005; 
Kučera et al., 2017). Thus, in the 15pct treatment, the hypoxic response may be downregulated 
by the predicted upregulation of DUSP1 and PRKAA1 (Table 4). Suppression of the remaining 
regulatory molecules was predicted, including suppression of the hypoxia-responsive HIF1Α, 
TLR4, RICTOR, CD38, NEDD9, IL5, and ATF4 genes (Table 4).  

Comparison of the 2pct and 21pct treatments produced only three significantly changed 
upstream regulators, HIF1α, NEDD9, and STAT3, all of which were increased (Table 4). All of 
these factors are hypoxia-responsive and upregulated under hypoxic conditions (Martin-
Rendon et al., 2007; Niu et al., 2008; Iyer et al., 1998), and suggest a typical hypoxic response. 
Correspondingly, the two networks derived from the DE genes in the 2v21 contrast involve 
cancer/cellular growth (-log pval of 40) and the inflammatory response/cellular growth (Table 
5). As most hypoxia studies are performed on cancer cells under hypoxic conditions to mimic 
the hypoxic interior microenvironment of a tumor mass, the response of the bronchial 
epithelium to maintain cellular viability and growth under the hypoxic assay condition appear 
to activate a similar regulatory network. The predicted involvement of an inflammatory 
response is in accordance with the induction of a hypoxic response; inflammation is co-
activated with hypoxia genes through the activity of NFκB (Bartels et al., 2013). 

IPA Network analysis identified 11 individual networks scoring above 10 in the 15v2 gene list, 
involving cellular assembly/organization, cellular movement, cancer, energy production, 
dermatological diseases, cell cycle, replication, carbohydrate metabolism, cellular growth, 
respiratory disease, and embryonic development (Table 5), potentially representing an 
enrichment of growth and cellular mitigation of the mild hypoxia the cells experienced. Six 
individual networks were identified in the 15v21 DE list, involving cardiovascular disease, 
cellular movement, cellular assembly and organization, RNA post-transcriptional modification, 
and connective tissue development/function. The 2v21 comparison yielded only two significant 
networks involving cancer/cellular development and inflammation.  
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Table 5  
IPA-predicted Molecular Networks Based on Gene Expression Profiles of Microarray Datasets 

Analysis 
Score  

(-log pVal) 
Focus 

Molecules Top Diseases and Functions 

15v2 

35 22 Cellular Assembly and Organization, Cellular Movement, Cell 
Morphology 

31 20 Cellular Movement, Cellular Compromise, Glomerular Injury 

29 19 Cancer, Organismal Injury and Abnormalities, Cellular 
Movement 

24 17 Cancer, Dermatological Diseases and Conditions, Organismal 
Injury and Abnormalities 

22 16 Energy Production, Nucleic Acid Metabolism, Small Molecule 
Biochemistry 

22 16 Dermatological Diseases and Conditions, Organismal Injury 
and Abnormalities, Cancer 

21 15 Cell Cycle, Cellular Growth and Proliferation, DNA 
Replication, Recombination, and Repair 

21 15 Carbohydrate Metabolism, Energy Production, Molecular 
Transport 

17 13 Cellular Growth and Proliferation, Developmental Disorder, 
Hereditary Disorder 

17 13 Respiratory Disease, Cellular Development, Connective 
Tissue Development and Function 

13 11 Embryonic Development, Organ Development, Organ 
Morphology 

2v21 

40 16 Cancer, Cellular Development, Cellular Growth and 
Proliferation 

12 6 Inflammatory Response, Cellular Movement, Cellular Growth 
and Proliferation 

15v21 

30 18 Cardiovascular Disease, Organismal Injury and 
Abnormalities, Cell Morphology 

28 17 Cardiac Enlargement, Cardiovascular Disease, Cardiovascular 
System Development and Function 

26 16 Cellular Movement, Cellular Development, Embryonic 
Development 

24 15 Cellular Assembly and Organization, DNA Replication, 
Recombination, and Repair, Post-Translational Modification 

20 13 RNA Post-Transcriptional Modification, Cancer, Cell Death 
and Survival 

18 12 Connective Tissue Development and Function, Lipid 
Metabolism, Small Molecule Biochemistry 

Note. IPA = Ingenuity Pathway Analysis. 
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The most significant regulator effect networks identified by IPA in the 15v2 and 15v21 
treatments demonstrate the widespread genic downregulation of the 15pct treatment 
concerning both the normoxic 21pct and hypoxic 2pct condition (Figure 9). In the 15v2 contrast 
(Figure 9A), only one of the four regulated cellular processes, 'consumption of O2,' is predicted 
to increase, while the remaining ('cell proliferation of breast cancer cell line,' 'adhesion of 
tumor cell lines,' and 'development of body trunk') are downregulated. Of the noted health 
effects, 'edema' is upregulated, while 'cell death,' 'neurological signs,' and 'atherosclerosis' are 
downregulated. While the implications of the health effect regulation are not clear, the 
upregulation of 'consumption of O2' indicates that the cells in the 15v2 contrast may be 
consuming O2 by processes outside the classical hypoxic response in the 15pct condition. 
Further, only four of the predicted molecular interactions are in opposition to the expected 
expression pattern, as denoted by the yellow lines in Figure 9A, lending confidence to the 
predicted regulatory network.  

 

Figure 9. Top predicted regulatory network for each indicated contrast by IPA. A. 15pct vs. 2pct 
contrast indicates the downregulation of hypoxia regulators and proliferative responses but an 
increase in edema and oxygen consumption. B. 15pct vs. 21pct contrast indicates a decrease in 
proliferative functions and cellular activity functions. The key to color-coding is at the bottom right. 

 

In the 15v21 contrast, the top regulatory effect network indicates a global decrease in cellular 
proliferation and movement, mediated by predicted downregulation of CTGF, JNK, RELA, ERK, 
TNF, and RICTOR (Table 4). In this predicted network, only one interaction, a suppressive effect 
of TNF on 'Migration of Endothelial Cells,' contravened the predictive matrix (indicated by the 
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yellow line in Figure 9B). As no regulatory networks were predicted in the 2v21 contrast due to 
the small number of DE genes, none are shown. The predicted downregulation of upstream 
effectors RICTOR, TNF, ERK, RELA, JNK, and CTGF was completely consistent with the observed 
direction-of-expression of measured gene expression. The predicted downregulation of RELA, 
which promotes NFκB-mediated transcription (Culver et al., 2010); RICTOR, activated during 
hypoxia (Schmidt et al., 2017); TNF, which serves to upregulate inflammatory responses and is 
activated during hypoxia by HIF1α (Ghosh et al., 2013); ERK, also activated during hypoxia (Liu 
et al., 2010); JNK, a family of genes upregulated in response to hypoxia with HIF1α-inducing 
activity (Sala et al., 2018); and CTGF, a cellular growth factor upregulated by activated HIF1α 
(Higgins et al., 2004), appears to demonstrate the suppression of the HIF1α-regulated genes in 
HBECs exposed to a 15% O2 environment. Thus, the cellular response to this O2 level is likely 
mediated by other avenues, possibly through the large-scale gene upregulation observed here. 

The main difference between the 2pct and 21pct treatments was in the upregulation of HIF1α-
activated genes and thereby the hypoxic response. The activation of the hypoxic response may 
have maintained cellular homeostasis, allowing the cells to maintain normal activity while 
under severe hypoxia, resulting in the similarity in chromatin accessibility and gene expression 
between the 2pct and 21pct treatments. An alternative hypothesis is that, under the very 
energetically restrictive 2% O2 condition, the bronchial epithelial cells used herein suspended 
the majority of cellular processes to conserve energy and prevent further damage until O2 was 
restored. The small number of significant differences between the 2pct and 21pct treatments 
may signal a global inhibition of the cellular response that serves to inhibit chromatin 
remodeling. The corresponding small number of DE genes between the 2pct and 21pct 
treatments may result from global transcriptional repression and preservation of the existing 
RNA in the still-living cell (Koritzinsky et al., 2006; Staudacher et al., 2015; Batie et al. 2018).  

Transcription factor motif analysis 

To assess enrichment of transcription factor motifs, we performed de novo motif enrichment 
analysis on individual consensus narrow peak lists from each treatment with the HOMER 
software package (findMotifsGenome.pl). The contrasts made were identical to those 
performed previously. Comparing the 15pct treatment against the 21pct treatment, 36 
enriched de novo motifs were discovered with p-values above 1e-50 (Table 6, Supplementary 
Files 1, 2, and 3). The 15pct vs. 2pct comparison found 26 enriched motifs, and the 2pct vs. 
21pct analysis found 28 enriched motifs. Among all enriched motifs (Supplementary Files 1, 2, 
and 3), only the Nuclear Factor Y motif (NFY), a widespread transcription factor responsible for 
a vast range of cellular functions and responses, including regulatory roles in hypoxia (Ly et al., 
2013; Dengler et al., 2013) was enriched in all three comparisons. As two of the comparisons 
contrast hypoxic states against the normoxic state (15v21, 2v21), and the remaining 
comparison contrasts two different levels of hypoxia (15v2), NFY was likely involved in the 
hypoxic response only in the 2pct treatment and in other processes in the 15pct and 21pct 
treatments.  
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Table 6. Enriched Motifs in Comparison of ATAC-seq Peak Lists of Each Treatment 

 

Note. ATAC = Assay for Transposase-Accessible Chromatin. 

Several motifs were detected in two individual analyses among the top 10 enriched motifs for 
each contrast. ERG and BORIS were each enriched in the 15v21 and 15v2 contrasts, suggesting 
a unique role in response to the 15% O2 environment. ERG, a family of transcription factors 
activating HIF1α expression (Aprelikova et al., 2006) and BORIS (synonymous with CTCFL), a 
transcription factor involved in germline cell activation and DNA demethylation (Pugacheva et 
al., 2015, 2016), perhaps signaling the importance of demethylation in the 15pct treatment in 
altering the chromatin profile during mild hypoxia, were enriched in the 15v21 and 15v2 
comparisons, signaling enrichment in the 15pct treatment. JunB, upregulated by hypoxia and 
activating hypoxia-induced angiogenic pathways (Licht et al., 2006; Schmidt et al., 2007), was 
enriched in both the 15v2 and 2v21 contrasts. JunB enrichment in the 15v2 contrast had the 
highest significance in the entire set of comparisons (p= 1e10-12768), reflecting the ability of the 
mildly hypoxic state to activate the JunB transcription factor, whereas the severely hypoxic 2pct 
state was enriched in JunB over the 21pct state in the expression of different JunB binding sites. 
The enrichment of JunB in both the 15v2 and 2v21 contrasts may imply that JunB enrichment 
activates differing gene sets in the 15pct and 2pct treatments.  

The Unique motifs detected in the 15v21 contrast were Fra1, P53, CEBPB, TEAD4, FOXJ3, 
POL012.1, and RUNX1. FRA1 has been observed to increase under intermittent hypoxia 
(Messenger et al., 2012), P53 stabilizes HIF1α and also triggers transcription of cellular stress-
response genes during hypoxia and other stresses, although it may also be downregulated by 
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hypoxia (Sermeus & Michiels, 2011). CEBPBP binding has been seen to be downregulated by 
hypoxia in breast cancer cells in a HIF1α dependent fashion, signifying that alternate 
mechanisms may be at work in the 15pct treatment (Seifeddine et al., 2008). TEAD4 plays a role 
in ROS mitigation (Kaneko & DePamphilis 2013), FOXJ3 has no known role in hypoxia, but its 
binding sites may be co-bound by the hypoxia-inducible FOXO3 (Chen et al., 2016). There is very 
little available functional information regarding POL012.1, and RUNX1 induces transcription of 
hematopoietic genes but also inhibits HIF1α-mediated transcriptional activation (Peng et al., 
2008). Hence, the 15pct treatment does show evidence of hypoxia-induced gene transcription, 
but the enrichment of CEBPB, TEAD4, FOXJ3, and RUNX1 suggests that HIF1α-mediated 
responses are not a factor at 15% O2. Further, TEAD4, while not noted to be involved in 
hypoxia, is known to activate VEGF transcription, which is responsible for hypoxia-induced 
angiogenesis (Teng et al., 2016, Morfoisse et al., 2014).  

The unique motifs detected in the 15v2 contrast were SP2, HLF, TEAD3, FOXO3, RUNX2, 
POU4F3, and PB0008.1. FOXO3 (Bakker et al., 2007), HLF (Ema et al., 1999), and RUNX2 (Lee et 
al., 2012) all are involved in the hypoxic response and are increased during hypoxia. RUNX2, 
interestingly, serves to stabilize HIF1α protein as well as increase angiogenic responses (Lee et 
al., 2012). Data on POU4F3 and PB0008.1 are insufficient to predict a functional role. Thus, the 
contrast of the 15pct and 2pct treatment shows an increase in many hypoxic response motifs in 
the 15pct treatment.  

Unique motifs in the 2v21 contrast were YY1, PB0199.1, POL006.1, ETS, PB0156.1, CRE, and 
NRF1. YY1 (Wu et al., 2012), ETS (Aprelikova et al., 2006), CRE (Taylor et al., 2000), and NRF1 
(Chepelev et al., 2011) are activated during hypoxia, and play roles focused on HIF1α 
stabilization, although NRF1 has also been shown to inhibit HIF1α (Wang et al., 2016). No 
published data are available for the transcription factors PB0199.1, Pol006.1, or PB0156.1. The 
transcription factor profile of the 2pct treatment in contrast to the 21pct treatment revealed a 
largely hypoxic response, as expected. To test the accuracy of these motif analyses, the 
reciprocal analyses were performed (21v1, 21v15, and 1v15, data not shown); each reciprocal 
motif analysis produced substantially different results. The additional JunB binding sites 
expressed in the 15pct treatment were not sufficient to reach significance, yet the additional 
JunB binding sites found in 2pct treatment are even more significantly different from the 15pct 
treatment. 

Conclusions 

This study demonstrated that a mildly hypoxic environment simulating the atmospheric 
composition of a pressurized aircraft cabin at cruising altitude (15% O2) causes significant 
changes in both the gene expression profile and chromatin accessibility of cultured HBECs. We 
also demonstrated a relative lack of alterations in chromatin accessibility or large-scale changes 
in gene expression, centering on a hypoxia response, within cultured HBECs under the hypoxic 
state of 2% O2, an O2 level used in many cancer studies and which simulates the O2-poor intra-
tumor environment encountered by many cells enclosed within solid tumors. The substantial 
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response at 15% O2 may have been due to a cellular attempt to mitigate and overcome this 
mild reduction in O2 levels. In comparison, the relative lack of response at 2% O2 may have been 
attributable to a global suspension of cellular and transcriptional activity at this unusually low 
O2 level. To confirm and better address the findings of this study, an expanded research 
protocol is necessary, with 1) additional individual subjects represented among the population 
assayed, 2) increased read depth in the ATAC-seq portion of the study, preferably surpassing 
100 million filtered reads per replicate, and 3) similar use of microarrays or RNAseq-based gene 
expression analysis to capture concurrent gene expression data. 
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Supplementary Tables, Figures, and Files. 

 

Supplementary Table 1. Combined (union) list of called ATAC-seq peaks for all treatments. 

Supplementary Table 2. Feature counts table of reads mapping to each called ATAC-seq 
peak in the union peak list. 

Supplementary Table 3. Differentially expressed ATAC-seq peaks in 15pct vs. 21pct 
treatments. 

Supplementary Table 4. Differentially expressed ATAC-seq peaks in 15pct vs. 2pct 
treatments. 

Supplementary Table 5. Differentially Expressed ATAC-seq peaks in 2pct vs. 21pct 
treatments. 

Supplementary Table 6. Differentially expressed transcript clusters in microarray 
comparison of 15pct vs. 21pct treatments. 

Supplementary Table 7. Differentially expressed transcript clusters in microarray 
comparison of 15pct vs. 2pct treatments. 

Supplementary Table 8. Differentially expressed transcript clusters in microarray 
comparison of 2pct vs. 21pct treatments. 

Supplementary Table 9. Intersection of DE ATAC peaks and DE microarray-identified genes 
in the 2pct vs. 21pct comparison. 

Supplementary Table 10. Intersection of DE ATAC peaks and DE microarray-identified genes 
in the 15pct vs. 21pct comparison. 

Supplementary Table 11. Intersection of DE ATAC peaks and DE microarray-identified genes 
in the 15pct vs. 2pct comparison. 

Supplementary File 1. Differential motif analysis of ATAC-seq peaks called in 15pct vs. 21pct 
contrast. Enriched motifs are more highly represented in 15pct peak list. 

Supplementary File 2. Differential motif analysis of ATAC-seq peaks called in 15pct vs. 2pct 
contrast. Enriched motifs are more highly represented in 15pct peak list. 

Supplementary File 3. Differential motif analysis of ATAC-seq peaks called in 2pct vs. 21pct 
contrast. Enriched motifs are more highly represented in 2pct peak list. 

 

 

https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_1.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_2.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_3.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_4.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_5.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_6.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_7.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_8.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_9.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_10.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryTable_11.xlsx
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryFile_1.pdf
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryFile_2.pdf
https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2020s/media/SupplementaryFile_3.pdf
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